Skip to main content
Log in

Unique reconstruction of band-limited signals by a Mallat-Zhong wavelet transform algorithm

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We show that uniqueness and existence for signal reconstruction from multiscale edges in the Mallat and Zhong algorithm become possible if we restrict our signals to Paley-Wiener space, band-limit our wavelets, and irregularly sample at the wavelet transform (absolute) maxima—the edges—while possibly including (enough) extra points at each level. We do this in a setting that closely resembles the numerical analysis setting of Mallat and Zhong and that seems to capture something of the essence of their (practical) reconstruction method. Our work builds on a uniqueness result for reconstructing an L2 signal from irregular sampling of its wavelet transform of Gröchenig and the related work of Benedetto, Heller, Mallat, and Zhong. We show that the rate of convergence for this reconstruction algorithm is geometric and computable in advance. Finally, we consider the effect on the rate of convergence of not sampling enough local maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H. H., and Borwein, J. M. (1993). On the convergence of von Neumann’s alternating projection algorithm for two sets.Set-Valued Anal.,1, 185–212.

    Article  MATH  MathSciNet  Google Scholar 

  2. Benedetto, J. (1992). Irregular sampling and frames. InWavelets. A Tutorial in Theory and Applications, C. K. Chui, ed., Academic Press, New York.

    Google Scholar 

  3. Benedetto, J., and Heller, W. (1990). Irregular sampling and the theory of frames.Note Mat. 10(1), 103–125.

    MathSciNet  Google Scholar 

  4. Berman, Z. (1992). Generalizations and properties of the multiscale maxima and zero-crossings representations. Ph.D. dissertation, University of Maryland, College Park, MD.

    Google Scholar 

  5. —— (1991). The uniqueness question of discrete wavelet maxima representation. Technical Report TR 91-48rl, System Research Center, University of Maryland, College Park, MD.

    Google Scholar 

  6. Şetin, A. E., and Ansari, R. (1994). Signal recovery from wavelet transform maxima.IEEE Trans. Signal Process.,42(1), 194–196.

    Article  Google Scholar 

  7. Champeney, D. C. (1987).A Handbook of Fourier Theorems. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  8. Chui, C. K. (1992).An Introduction to Wavelets. Academic Press, New York.

    MATH  Google Scholar 

  9. Daubechies, I. (1992).Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics No. 61, Society for Industrial and Applied Mathematics, Philadelphia, PA.

    MATH  Google Scholar 

  10. Duffin, R. J., and Schaeffer, A. C. (1952). A class of nonharmonic Fourier series.Trans. Amer. Math. Soc. 72, 341–366.

    Article  MATH  MathSciNet  Google Scholar 

  11. Feichtinger, H. G., and Gröchenig, K. (1993). Theory and practice of irregular sampling. InWavelets: Mathematics and Applications. J. Benedetto and M. Frazier, eds., CRC Press, Boca Raton, FL.

    Google Scholar 

  12. Gröchenig, K. (1991). Sharp results on random sampling of band-limited functions.Proc. Nato ASI Workshop Stochastic Processes. Kluwer Academic Publishers, New York.

    Google Scholar 

  13. —— (1992). Reconstruction algorithms in irregular sampling.Math. Comp. 59, 181–194.

    Article  MATH  MathSciNet  Google Scholar 

  14. —— (1993). Irregular sampling of wavelet and short-time Fourier transforms.Constr. Approx. 9, 283–297.

    Article  MATH  MathSciNet  Google Scholar 

  15. Heller, W. (1991). Frames of exponentials and applications. Ph.D. dissertation, University of Maryland, College Park, MD.

    Google Scholar 

  16. Hurt, N. E. (1989).Phase Retrieval and Zero Crossings. Kluwer Academic Publishers, New York.

    MATH  Google Scholar 

  17. Körner, T. W. (1988).Fourier Analysis. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  18. Logan, B. F. (1977). Information in the zero crossings of bandpass signals.Bell Systems Tech. J. 56, 487–510.

    MathSciNet  Google Scholar 

  19. Mallat, S., and Zhong, S. (1989). Complete signal representation with multiscale edges. Technical Report No. 483, December 1989. Dept. of Computer Science, Courant Institute of Mathematical Sciences.

  20. Mallat S., and Zhong, S. (1992). Characterization of signals from multiscale edges.IEEE Trans. Pattern Anal. Mach. Intell. 14(7), 710–732.

    Article  Google Scholar 

  21. Marks R. J. II, (1991).Introduction to Shannon Sampling and Interpolation Theory. Springer-Verlag New York.

    MATH  Google Scholar 

  22. Meyer, Y. (1985–1986). Principe d’incertitude, bases hilbertiennes et algèbres d’opérateurs. Séminaire Bourbaki, No. 662.

  23. --. Un contre-exemple à la conjecture de Marr et à celle de S. Mallat, preprint.

  24. —— (1993).Wavelets. Algorithms and Applications (translated and revised by R. D. Ryan), Society for Industrial and Applied Mathematics, Philadelphia, PA.

    MATH  Google Scholar 

  25. von Neumann, J. (1950).Functional Operators Vol. II, Ann. Math. Studies 22, Princeton, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  26. Opial, Z. (1967). Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bull. Amer. Math. Soc. 73, 591–597.

    MATH  MathSciNet  Google Scholar 

  27. Plancherel, M., and Pólya, G. (1938). Fonctions entières et intégrales de Fourier multiples (Seconde partie).Commentat. Math. Helv. 10, 110–163.

    Article  Google Scholar 

  28. Paley, R., and Wiener, N. (1934). Fourier transforms in the complex domain.Amer. Math. Soc. Colloq. Publ. 19, American Mathematical Society, Providence, RI.

    MATH  Google Scholar 

  29. Rudin, W. (1974).Real and Complex Analysis, McGraw-Hill, New York.

    MATH  Google Scholar 

  30. Shannon, C. E. (1949). Communication in the presence of noise.Proc. I.R.E. 37, 10–21.

    MathSciNet  Google Scholar 

  31. Whittaker, E. T. (1915). On the functions which are represented by the expansions of the interpolation theory.Proc. R. Soc. Edinburgh 35, 181–194.

    Google Scholar 

  32. Youla, D. C., and Webb, H. (1982). Image restoration by the method of convex projections: Part I—Theory.IEEE Trans. Med. Imaging MI-1(2), 81–94.

    Article  Google Scholar 

  33. Young, R. M. (1980).An Introduction to Nonharmonic Fourier Series. Academic Press, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kicey, C.J., Lennard, C.J. Unique reconstruction of band-limited signals by a Mallat-Zhong wavelet transform algorithm. The Journal of Fourier Analysis and Applications 3, 63–82 (1997). https://doi.org/10.1007/BF02647947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647947

Math Subject Classifications

Keywords and Phrases

Navigation