Skip to main content
Log in

Niti and NiTi-TiC composites: Part III. shape-memory recovery

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The transformation behavior of near-equiatomic NiTi containing 0, 10, and 20 vol pct TiC particulates is investigated by dilatometry. Undeformed composites exhibit a macroscopic transformation strain larger than predicted when assuming that the elastic transformation mismatch between the matrix and the particulates is unrelaxed, indicating that the mismatch is partially accommodated by matrix twinning during transformation. The thermal recovery behavior of unreinforced NiTi which was deformed primarily by twinning in the martensite phase shows that plastic deformation by slip increases with increasing prestrain, leading to (1) a decrease of the shape-memory strain on heating, (2) an increase of the two-way shape-memory strain on cooling, (3) a widening of the temperature interval over which the strain recovery occurs on heating, and (4) an increase of the transformation temperature hysteresis. For NiTi composites, the recovery behavior indicates that most of the mis-match during mechanical deformation between the TiC particulates and the NiTi matrix is relaxed by matrix twinning. However, some relaxation takes place by matrix slip, resulting in the following trends with increasing TiC content at constant prestrain: (1) decrease of the shape-memory strain on heating, (2) enhancement of the two-way shape-memory strain on cooling, and (3) broadening of the transformation interval on heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Wayman:Met. Forum, 1981, vol. 4, pp. 135–41.

    CAS  Google Scholar 

  2. J. Perkins:Met. Forum, 1981, vol. 4, pp. 153–63.

    CAS  Google Scholar 

  3. T. Saburi and S. Nenno: inSolid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1455–79.

    Google Scholar 

  4. K. Otsuka and K. Shimizu:Int. Mater. Rev., 1986, vol. 31, pp. 93–114.

    CAS  Google Scholar 

  5. K. Shimizu and T. Tadaki: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 1–60.

    Google Scholar 

  6. T. Honma: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 61–115.

    Google Scholar 

  7. C.M. Wayman and J.D. Harrison:J. Met., 1989, vol. 41, pp. 26–28.

    CAS  Google Scholar 

  8. C.M. Friend:J. Phys. IV, 1991, vol. 1, pp. C4–25-C4–34.

    Google Scholar 

  9. E. Hornbogen: inProgress in Shape Memory Alloys, S. Euken, ed., DGM, Oberursel, Germany, 1992, pp. 3–19.

    Google Scholar 

  10. C.M. Wayman:MRS Bull., 1993, vol. 18, pp. 49–56.

    CAS  Google Scholar 

  11. T.W. Duerig and A.R. Pelton:Materials Properties Handbook: Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 1035–48.

    Google Scholar 

  12. L.M. Schetky:Robotics Age, 1984, pp. 13–17.

  13. C.M. Jackson, H.J. Wagner, and R.J. Wasilewski: NASA-SP 5110, 1972, pp. 23-88.

  14. E. Hornbogen: inAdvanced Structural and Functional Materials, W.G.J. Bunk, ed., Springer-Verlag, New York, NY, 1991, pp. 133–63.

    Google Scholar 

  15. T. Stevens:Mater. Eng., 1991, vol. 108, pp. 18–20.

    Google Scholar 

  16. Y. Suzuki and Y. Sekiguchi:Shape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 176–269.

    Google Scholar 

  17. D. Stoeckel:Adv. Mater. Proc., 1990, vol. 138 (10), pp. 33–36.

    Google Scholar 

  18. R.G. Gilbertson:Muscle Wires Project Book, Mondo-tronics, San Anselmo, CA, 1994, pp. 1–22.

    Google Scholar 

  19. K. Escher and E. Hornbogen:J. Phys. IV, 1991, vol. 1, pp. C4–427-C4–432.

    Google Scholar 

  20. E. Hornbogen, M. Thumann, and B. Velten: inProgress in Shape Memory Alloys, S. Eucken ed., DGM, Oberursel, Germany, 1992, pp. 225–36.

    Google Scholar 

  21. L.C Zhao, T.W. Duerig, S. Justi, K.N. Melton, J.L. Proft, W. Yu, and C.M. Wayman:Scripta Metall. Mater., 1990, vol. 24, pp. 221–226.

    Article  CAS  Google Scholar 

  22. D. Mari and D.C Dunand:Metall. Mater. Trans. A, 1996, vol. 26A, pp. 2833–48.

    Google Scholar 

  23. K.L. Fukami-Ushiro, D. Man, and D.C. Dunand:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 183–191.

    CAS  Google Scholar 

  24. D.C. Dunand, D. Mari, M.A.M. Bourke, and J.A. Goldstone:Metall. Mater. Trans. A., in press.

  25. K.L. Fukami: Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1994.

    Google Scholar 

  26. Smithells Metals Reference Book, E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann, Oxford, United Kingdom, 1992, p. 27.5.

    Google Scholar 

  27. Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, ASM, Metals Park, OH, 1979, p. 64.

  28. W.A. Backofen:Deformation Processing, Addison-Wesley, Reading MA, 1972, pp. 162–68.

    Google Scholar 

  29. T.E. Buchheit and J.A. Wert:Metall Mater. Trans. A, 1994, vol. 25A, pp. 2383–89.

    CAS  Google Scholar 

  30. C.H. Hsu, M.S. Wechsler, and H. Diehl: Ames Laboratory Report No. IS-4799, Ames, IA, 1982, pp. 1–19.

  31. K. Otsuka, T. Sawamura, K. Shimizu, and C.M. Wayman:Metall. Trans., 1971, vol. 2, pp. 2583–88.

    Article  CAS  Google Scholar 

  32. K. Otsuka, T. Sawamura, and K. Shimizu:Phys. Status Solidi, 1971, vol. 5, pp. 457–70.

    Article  CAS  Google Scholar 

  33. I.I. Kornilov, Y.V. Kachur, and O.K. Belousov:Fiz. Met. Metalloved., 1971, vol. 32, pp. 420–22.

    CAS  Google Scholar 

  34. C.H. Hsu and M.S. Wechsler: inSolid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1293–97.

    Google Scholar 

  35. H.C Ling and R. Kaplow:Mater. Sci. Eng., 1981, vol. 51, pp. 193–201.

    Article  CAS  Google Scholar 

  36. M. Taya and R.J. Arsenault:Metal Matrix Composites—Thermomechanical Behavior, Pergamon Press, Oxford, United Kingdom, 1989, pp. 177–208.

    Google Scholar 

  37. R. Chang and L.J. Graham:J. Appl. Phys., 1966, vol. 37, pp. 3778–83.

    Article  CAS  Google Scholar 

  38. The CRC Materials Science and Engineering Handbook, J. Shackelford and W. Alexander, eds., CRC Press, Boca Raton, FL, 1992, p. 358.

    Google Scholar 

  39. E. Sato and K. Kuribayashi:Acta Metall. Mater., 1993, vol. 41, pp. 1759–67.

    Article  CAS  Google Scholar 

  40. W.A. Johnson, J.A. Domingue, S.H. Reichman, and F.E. Sczerzenie:J. Phys., 1982, vol. 43, pp. C4–291-C4–296.

    Google Scholar 

  41. R.J. Wasilewski:Scripta Metall., 1975, vol. 9, pp. 417–22.

    Article  CAS  Google Scholar 

  42. G. Guenin:Phase Transitions, 1989, vol. 14, pp. 165–75.

    Google Scholar 

  43. T.W. Duerig and K.N. Melton:The Martensitic Transformation in Science and Technology, E. Hornbogen and N. Jost, eds., DGM, Oberursel, Germany, 1989, pp. 191–98.

    Google Scholar 

  44. L.C. Zhao, T.W. Duerig, S. Justi, K.N. Melton, J.L. Proft, W. Yu, and C.M. Wayman:Scripta Metall. Mater., 1990, vol. 24, pp. 221–26.

    Article  CAS  Google Scholar 

  45. R.J. Salzbrenner and M. Cohen:Acta Metall., 1979, vol. 27, pp. 739–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K.L. FUKAMI-USHIRO, formerly Graduate Student, Department of Materials Science and Engineering, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukami-Ushiro, K.L., Dunand, D.C. Niti and NiTi-TiC composites: Part III. shape-memory recovery. Metall Mater Trans A 27, 193–203 (1996). https://doi.org/10.1007/BF02647759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647759

Keywords

Navigation