Skip to main content
Log in

Niti and NiTi-TiC composites: Part II. compressive mechanical properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation behavior under uniaxial compression of NiTi containing 0, 10, and 20 vol pct TiC participates is investigated both below and above the matrix martensitic transformation temperature: (1) at room temperature, where the martensitic matrix deforms plastically by slip and/or twinning; and (2) at elevated temperature, where plastic deformation of the austenitic matrix takes place by slip and/or formation of stress-induced martensite. The effect of TiC particles on the stress-strain curves of the composites depends upon which of these deformation mechanisms is dominant. First, in the low-strain elastic region, the mismatch between the stiff, elastic particles and the elastic-plastic matrix is relaxed in the composites: (1) by twinning of the martensitic matrix, resulting in a macroscopic twinning yield stress and apparent elastic modulus lower than those predicted by the Eshelby elastic load-transfer theory; and (2) by dislocation slip of the austenitic matrix, thus increasing the transformation yield stress, as compared to a simple load-transfer prediction, because the austenite phase is stabilized by dislocations. Second, in the moderate-strain plastic region where nonslip deformation mechanisms are dominant, mismatch dislocations stabilize the matrix for all samples, thus (1) reducing the extent of twinning in the martensitic samples or (2) reducing the formation of stressinduced martensite in the austenitic samples. This leads to a strengthening of the composites, similar to the strain-hardening effect observed in metal matrix composites deforming solely by slip. Third, in the high-strain region controlled by dislocation slip, weakening of the NiTi composites results, because the matrix contains (1) untwinned martensite or (2) retained austenite, which exhibit lower slip yield stress than twinned or stress-induced martensite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Wayman:Met. Forum, 1981, vol. 4, pp. 135–41.

    CAS  Google Scholar 

  2. J. Perkins:Met. Forum, 1981, vol. 4, pp. 153–63.

    CAS  Google Scholar 

  3. T. Saburi and S. Nenno: inSolid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1455–79.

    Google Scholar 

  4. K. Otsuka and K. Shimizu:Int. Met. Rev., 1986, vol. 31, pp. 93–114.

    CAS  Google Scholar 

  5. K. Shimizu and T. Tadaki: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 1–60.

    Google Scholar 

  6. T. Honma: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 61–115.

    Google Scholar 

  7. C.M. Wayman and J.D. Harrison:J. Met., 1989, vol. 41, pp. 26–28.

    CAS  Google Scholar 

  8. E. Hornbogen: inProgress in Shape Memory Alloys, S. Euken, ed., DGM, Oberursel, Germany, 1992, pp. 3–19.

    Google Scholar 

  9. D. Goldstein and S.M. Hoover: U.S. Patent No. 5,145,506, 1992.

  10. S.N. Kul’kov, T.M. Poletika, A.Y. Chukhlomin, and V.E. Panin:Poroshkovaya Metall., 1985, vol. 8 (260), pp. 652–55.

    Google Scholar 

  11. T.M. Poletika, S.N. Kul’kov, and V.E. Panin:Poroshkovaya Metall., 1983, vol. 7 (247), pp. 560–64.

    Google Scholar 

  12. Y. Yamada:Phys. Rev., 1992, vol. 46, pp. 5906–11.

    Article  Google Scholar 

  13. Y. Furuya, A. Sasaki, and M. Taya:Mater. Trans. JIM, 1993, vol. 34, pp. 224–27.

    CAS  Google Scholar 

  14. J.E. Bidaux, J.A.E. Manson, and R. Gotthardt: inFirst International Conference on Shape Memory and Superelastic Technologies, A.R. Pelton, D. Hodgson, and T. Duerig eds., MIAS, Monterey CA, 1995, pp. 37–42.

    Google Scholar 

  15. K. Escher and E. Hornbogen:J. Phys. IV, 1991, vol. 1, pp. C4–427-C4–432.

    Google Scholar 

  16. E. Hornbogen, M. Thumann, and B. Velten: inProgress in Shape Memory Alloys, S. Eucken ed., DGM, Oberursel, Germany, 1992, pp. 225–36.

    Google Scholar 

  17. T.W. Duerig and K.N. Melton: inThe Martensitic Transformation in Science and Technology, E. Hornbogen and N. Jost, eds., DGM, Oberursel, Germany, 1989, pp. 191–98.

    Google Scholar 

  18. L.C. Zhao, T.W. Duerig, S. Justi, K.N. Melton, J.L. Proft, W. Yu, and C.M. Wayman:Scripta Metall. Mater., 1990, vol. 24, pp. 221–26.

    Article  CAS  Google Scholar 

  19. D. Mari and D.C. Dunand:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 0000–00.

    Google Scholar 

  20. D.C. Dunand, D. Mari, M.A.M. Bourke, and J.A. Roberts:Metall. Mater. Trans. A, in press.

  21. K.L. Fukami-Ushiro and D.C. Dunand:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 193–203.

    CAS  Google Scholar 

  22. R.W.K. Honeycombe:The Plastic Deformation of Metals, Edward Arnold Publishers Ltd., London, 1984, pp. 204–20.

    Google Scholar 

  23. M.A. Meyers and K.K. Chawla:Mechanical Metallurgy Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984, pp. 467–90.

    Google Scholar 

  24. C.H. Vasel, A.D. Krawitz, E.F. Drake, and E.A. Kenik:Metall. Trans. A, 1985, vol. 16A, pp. 2309–17.

    CAS  Google Scholar 

  25. R. Schaller, D. Mari, M. Maamouri, and J.J. Ammann:J. Hard Mater., 1992, vol. 3, pp. 351–62.

    CAS  Google Scholar 

  26. D. Mari and D.R. Gonseth:Wear, 1993, vol. 165, pp. 9–17.

    Article  CAS  Google Scholar 

  27. C.M. Jackson, H.J. Wagner, and R.J. Wasilewski: NASA-SP 5110, 1972, pp. 23–74.

  28. The CRC Materials Science and Engineering Handbook, J. Shackelford and W. Alexander, eds., CRC Press, Boca Raton, FL, 1992, p. 436.

    Google Scholar 

  29. F. Takei, T. Miura, S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki:Scripta Metall., 1983, vol. 17, pp. 987–92.

    Article  CAS  Google Scholar 

  30. S. Miyazaki, K. Otsuka, and Y. Suzuki:Scripta Metall., 1981, vol. 15, pp. 287–92.

    Article  CAS  Google Scholar 

  31. S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki:Scripta Metall., 1984, vol. 18, pp. 883–88.

    Article  CAS  Google Scholar 

  32. T. Saburi, M. Yoshida, and S. Nenno:Scripta Metall., 1984, vol. 18, pp. 363–66.

    Article  CAS  Google Scholar 

  33. S. Miyazaki, S. Kimura, F. Takei, T. Miura, K. Otsuka, and Y. Suzuki:Scripta Metall., 1983, vol. 17, pp. 1057–62.

    Article  CAS  Google Scholar 

  34. J. Perkins:Scripta Metall., 1974, vol. 8, p. 1469.

    Article  CAS  Google Scholar 

  35. K.N. Melton and O. Mercier:Metall. Trans. A, 1978, vol. 9A, pp. 1487–88.

    CAS  Google Scholar 

  36. K.L. Fukami: Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1994.

    Google Scholar 

  37. N. Taylor, D.C. Dunand, and A. Mortensen:Acta Metall. Mater, 1993, vol. 41, pp. 955–65.

    Article  CAS  Google Scholar 

  38. F.F. Lange, L. Atteraas, F. Zok, and J.R. Porter:Acta Metall Mater., 1991, vol. 39, pp. 209–19.

    Article  CAS  Google Scholar 

  39. T.W. Clyne and P.J. Withers:An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, United Kingdom, 1993, pp. 44–165.

    Google Scholar 

  40. J.W. Hutchinson and R.M. McMeeking: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Boston, 1993, pp. 158–73.

    Google Scholar 

  41. A.G. Rozner and R.J. Wasilewski:J. Inst. Met., 1966, vol. 94, pp. 169–75.

    CAS  Google Scholar 

  42. K.N. Melton and O. Mercier:Acta Metall., 1981, vol. 29, pp. 393–98.

    Article  CAS  Google Scholar 

  43. M. Kato and H.-R. Pak:Phys. Status Solidi B, 1984, vol. 123, pp. 415–24.

    CAS  Google Scholar 

  44. M. Kato and H.-R. Pak:Phys. Status Solidi B, 1985, vol. 130, pp. 421–30.

    CAS  Google Scholar 

  45. S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki:J. Phys., 1982, vol. 43, pp. C4–255-C4–260.

    Google Scholar 

  46. S. Miyazaki and K. Otsuka:Metall. Trans. A, 1986, vol. 17A, pp. 53–63.

    CAS  Google Scholar 

  47. H. Kato, T. Koyari, M. Tokizane, and S. Miura:Acta Metall. Mater., 1994, vol. 42, pp. 1351–58.

    Article  CAS  Google Scholar 

  48. H. Tobushi, K. Tanaka, K. Kimura, T. Hori, and T. Sawada:JSME Int. J., 1992, vol. 35, pp. 278–83.

    CAS  Google Scholar 

  49. P.H. Leo, T.W. Shield, and O.P. Bruno:Acta Metall. Mater., 1993, vol. 41, pp. 2477–85.

    Article  CAS  Google Scholar 

  50. T. Saburi, T. Tatsumi, and S. Nenno:J. Phys., 1982, vol. 43, pp. C4–261-C4–266.

    Google Scholar 

  51. R. Chang and L.J. Graham:J. Appl. Phys., 1966, vol. 37, pp. 3778–83.

    Article  CAS  Google Scholar 

  52. T.M. Brill, S. Mittelbach, W. Assmus, M. Mülliner, and B. Lüthi:J. Phys. Condensed Matter, 1991, vol. 3, pp. 9621–27.

    Article  CAS  Google Scholar 

  53. M.F. Ashby:Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  54. P.B. Prangnell, T. Downes, W.M. Stobbs, and P.J. Withers:Acta Metall. Mater., 1994, vol. 42, pp. 3425–36.

    Article  CAS  Google Scholar 

  55. A.M. Redsten, E.M. Klier, A.M. Brown, and D.C. Dunand:Mater. Sci. Eng., 1996, vol. A201, pp. 88–102.

    Google Scholar 

  56. P. Filip, J. Rusek, and K. Mazanec:Z. Metallkd., 1991, vol. 82, pp. 488–91.

    CAS  Google Scholar 

  57. P. Filip, J. Rusek, and K. Mazanec:Mater. Sci. Eng., 1991, vol. A141, pp. L5-L8.

    CAS  Google Scholar 

  58. R.J. Wasilewski:Metall Trans., 1971, vol. 2, pp. 2973–81.

    CAS  Google Scholar 

  59. O. Mercier and E. Török:J. Phys., 1982, vol. 43, pp. C4–267-C4–272.

    Google Scholar 

  60. H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao:Acta Metall. Mater., 1991, vol. 39, pp. 2069–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K.L. FUKAMI-USHIRO, formerly Graduate Student, Department of Materials Science and Engineering, Massachusetts Institute of Technology

D. MARI, formerly Postdoctoral Fellow, Department of Materials Science and Engineering, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukami-Ushiro, K.L., Mari, D. & Dunand, D.C. Niti and NiTi-TiC composites: Part II. compressive mechanical properties. Metall Mater Trans A 27, 183–191 (1996). https://doi.org/10.1007/BF02647758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647758

Keywords

Navigation