Skip to main content
Log in

Surface morphology and compound layer pores of plasma nitrocarburized low carbon steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article deals with various aspects of nitrocarburizing of AISI 1010 steel by DC plasma at 600 °C. The initial stages of nitride formation and the effects of surface bombardment by hydrogen plasma species, as well as the effect of treatment current density on the surface morphology, were investigated in detail. The results show that in the pearlitic region carbides are removed during treatment in hydrogen plasma and that the current density influences the surface morphology significantly. A porous surface formed in a 1-minute treatment under high current density (8 mA/cm2), whereas a lower current density (2.4 mA/cm2) resulted in a highly stressed surface attributed to uneven thermal gradients. Iron nitrides were identified on the surface in either set of conditions. A pure epsilon compound layer was obtained by plasma nitrocarburizing for 6 hours and quenching. The pores in this layer are discussed in view of the 1-minute treatment results and are also compared to those observed in a nitriding treatment. The lack of carbon species in the nitriding plasma results in different mechanisms for pore formation and growth during the treatment. These results are discussed in view of current models for plasma nitriding and gas nitrocarburizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Manory:Mater. Manuf. Proc., 1990, vol. 5 (3), pp. 445–70.

    CAS  Google Scholar 

  2. A.M. Staines and T. Bell:Thin Solid Films, 1981, vol. 86, pp. 201–11.

    Article  CAS  Google Scholar 

  3. M.H. Jacobs, T.J. Law, and F. Ribet:Surf. Eng., 1985, vol. 1 (2), pp. 105–13.

    Google Scholar 

  4. J.G. Conybear and B. Endenhofer:Ind. Heat, 1989, Mar., pp. 18–21.

  5. J. Kölbel:Forschungsberichte des Landes Nordhein-Westfalen, West-Deutscher-Verlag. Köln, Germany, 1965, [No. 1555.].

    Google Scholar 

  6. M. Hudis:J. Appl. Phys., 1973, vol. 44 (4), pp. 1489–96.

    Article  CAS  Google Scholar 

  7. A. Szabo and H. Wilhelmi:Plas. Chem. Plas. Process., 1984, vol. 4 (2), pp. 89–103.

    Article  CAS  Google Scholar 

  8. B. Xu and Y. Zhang:Surf. Eng., 1989, vol. 3 (3), 1989, pp. 226–32.

    Google Scholar 

  9. E. Haruman, T. Bell, and Y. Sun:Surf. Eng., 1992, vol. 8 (4), pp. 275–82.

    CAS  Google Scholar 

  10. J. Hadfield: Master’s Thesis, University of Birmingham, Birmingham, England, 1986.

    Google Scholar 

  11. K.H. Jack:Proc. R. Soc. A, 1948, vol. 195, pp. 41–45.

    Google Scholar 

  12. J.L. Marchand, H. Michel, M. Gantois, and A. Ricard:Proc. Int. Conf. on Ion Nitriding, T. Spalvins, ed., ASM, Metals Park, OH, 1986, pp. 53–60.

    Google Scholar 

  13. R. Manory:J. Electrochem. Soc., 1986, vol. 8, p. 1752.

    Article  Google Scholar 

  14. Y. Khait, A. Inspektor, and R. Avni:Thin Solid Films, 1980, vol. 72, p. 239.

    Article  Google Scholar 

  15. R. Avni, V. Carmi, I. Rosenthal, R. Manory, and A. Grill:Thin Solid Films, 1983, vol. 107, pp. 235–44.

    Article  CAS  Google Scholar 

  16. Y. Catherine, G. Turban, and B. Grollean:Thin Solid Films, 1981, vol. 76, pp. 13–33.

    Article  Google Scholar 

  17. T. Lampe, S. Eisenberg, and G. Laudien:Surf. Eng., 1993, vol. 9 (1), pp. 69–76.

    CAS  Google Scholar 

  18. C.V. Robino and O.T. Inal:Mater. Sci. Eng., 1983, vol. 59, pp. 79–90.

    Article  CAS  Google Scholar 

  19. T. Spalvins:Ion Nitriding and Ion Carburising, T. Spalvins, ed., ASM INTERNATIONAL, Metals Park, OH, 1989, pp. 1–4.

    Google Scholar 

  20. Y. Inokuti, N. Nishida, and N. Ohashi:Metall. Trans. A, 1975, vol. 6A, pp. 773–84.

    CAS  Google Scholar 

  21. B. Prenosil:Strjirenstvi, 1973, vol. 23 (9), pp. 555–62.

    CAS  Google Scholar 

  22. E.J. Mittemeijer, A.B.P. Vogels, and P.J. Van Der Schaaf:J. Mater. Sci., 1980, vol. 15, pp. 3129–40.

    Article  CAS  Google Scholar 

  23. N.L. Loh:Proc. 2nd Aus. Int. Conf. on Surface Engineering, C. Subramanian and K. Strattford, eds., Surface Engineering Research Group, University of South Australia, Adelaide, South Australia, March, 1994, pp. C442-C453.

    Google Scholar 

  24. S. Li, R.R. Manory, and J.H. Hensler:Surf. Coat. Technol., 1995, vol. 71, pp. 112–20.

    Article  CAS  Google Scholar 

  25. S. Li and R.R. Manory: Australian Provisional Patent Application PM6183/94.

  26. H.C.F. Rozendaal, P.F. Colijin, and E.J. Mittemeijer:Surf. Eng., 1985, vol. 1 (1), pp. 30–42.

    CAS  Google Scholar 

  27. M.A.J. Somers and E.J. Mittemeijer:Surf. Eng., 1987, vol. 3 (2), pp. 123–37.

    Google Scholar 

  28. B. Prenosil:Harterei-Tech. Mitt., 1973, vol. 28, pp. 157–64.

    CAS  Google Scholar 

  29. A. Wells: Ph.D. Thesis, University of Liverpool, Liverpool, England, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Manory, R.R. Surface morphology and compound layer pores of plasma nitrocarburized low carbon steel. Metall Mater Trans A 27, 135–143 (1996). https://doi.org/10.1007/BF02647754

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647754

Keywords

Navigation