Skip to main content
Log in

Optimization of cold and warm workability in 304 stainless steel using instability maps

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation characteristics of stainless steel type AISI 304 under compression in the temperature range 20 °C to 600 °C and strain-rate range 0.001 to 100 s-1 have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At strain rates less than 5 s-1, 304 stainless steel exhibits flow localization, whereas dynamic strain aging occurs at intermediate temperatures and below 0.5 s-1. At room temperatures and strain rates less than 10 s-1, martensite formation is observed. To avoid the preceding microstructural instabilities, cold and warm working should be carried out at strain rates greater than 5 s-1. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the preceding instability features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hirschvogel and H.V. Dommenten:J. Mater. Process. Technol., 1992, vol. 35, pp. 343–46.

    Article  Google Scholar 

  2. M.G. Cockroft:Ductility, ASM, Cleveland, OH, 1968, p. 199.

    Google Scholar 

  3. S.P. Timothy:Acta Metall., 1987, vol. 35, p. 301–6.

    Article  CAS  Google Scholar 

  4. Volker Weiss:Inhomogenity of Plastic Deformation, Seminar of the American Society of Metals, Oct. 16–17, 1971, ASM, Metals Park, OH, 1973, p. 135–60.

    Google Scholar 

  5. A.S. Argon:Inhomogenity of Plastic Deformation, Seminar of the American Society of Metals, Oct. 16–17, 1971, ASM, Metals Park, OH, 1973, p. 161–89.

    Google Scholar 

  6. J.D. Baird:Inhomogenity of Plastic Deformation, Seminar of the American Society of Metals, Oct. 16–17, 1971, ASM, Metals Park, OH, 1973, p. 191–222.

    Google Scholar 

  7. F.N. Rhines:Inhomogenity of Plastic Deformation, Seminar of the American Society of Metals, Oct. 16–17, 1971, ASM, Metals Park, OH, 1973, p. 251–284.

    Google Scholar 

  8. S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1705–17 and 1719–28.

    Google Scholar 

  9. S.L. Semiatin and J.J. Jonas:Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, OH, 1984, p. 13.

    Google Scholar 

  10. S.L. Semiatin, N. Frey, N.D. Walker, and J.J. Jonas:Acta Metall., 1986, vol. 34, p. 167–76.

    Article  CAS  Google Scholar 

  11. H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende:Metals Handbook, ASM, Metals Park, OH, 1987, vol. 14, p. 417.

    Google Scholar 

  12. Y.V.R.K. Prasad:Ind. J. Technol., 1990, vol. 28, p. 435.

    CAS  Google Scholar 

  13. A.K.S. Kalyan Kumar: Master’s Thesis, Indian Institute of Science, Bangalore, 1987.

    Google Scholar 

  14. H. Ziegler:Progress in Solid Mechanics, John Wiley and Sons, New York, NY, 1983, vol. 4, p. 93.

    Google Scholar 

  15. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.

    CAS  Google Scholar 

  16. J.M. Alexander: inModeling of Hot Deformation of Steels, J.G. Lenard, ed., Springer-Verlag, Berlin, 1984, p. 101.

    Google Scholar 

  17. J.K. Chakravartty, M.K. Asundi, and Y.V.R.K. Prasad:Metall. Trans. A, 1991, vol. 22A, pp. 829–36.

    CAS  Google Scholar 

  18. J.K. Chakravartty, Y.V.R.K. Prasad, and M.K. Asundi:Zirconium in Nuclear Industry, Proc. 9th Int. Symp., ASTM STP 1132, C.M. Eucken and A.M. Garde, eds., ASTM, Philadelphia, PA, 1992, p. 48.

    Google Scholar 

  19. D. Padmavardhani and Y.V.R.K. Prasad:Metall. Trans. A, 1991, vol. 22A, pp. 2985–92 and 2993–3001.

    CAS  Google Scholar 

  20. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Metall. Trans. A, 1992, vol. 23A, pp. 3093–3103.

    CAS  Google Scholar 

  21. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Mater. Sci. Eng., 1993, vol. A160, pp. 63–69.

    CAS  Google Scholar 

  22. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Mater. Lett., 1992, vol. 15, pp. 79–83.

    Article  CAS  Google Scholar 

  23. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Mater. Sci. Technol., 1993, vol. 9, pp. 1021–30.

    CAS  Google Scholar 

  24. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Mater. Sci. Eng., 1994, vol. A177, pp. 143–49.

    Google Scholar 

  25. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:J. Nucl. Mater, 1993, vol. 206, pp. 77–81.

    Article  CAS  Google Scholar 

  26. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Mater. Lett., 1993, vol. 17, pp. 388–92.

    Article  CAS  Google Scholar 

  27. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Mater. Sci. Technol., 1993, vol. 9, pp. 899–906.

    CAS  Google Scholar 

  28. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad:Scripta Metall. Mater., 1993, vol. 28, p. 715–20.

    Article  CAS  Google Scholar 

  29. N. Srinivasan and Y.V.R.K. Prasad:Mater. Sci. Technol., 1992, vol. 8, pp. 206–12.

    CAS  Google Scholar 

  30. N. Ravichandran and Y.V.R.K. Prasad:Metall. Trans. A, 1991, vol. 22A, pp. 2339–48.

    CAS  Google Scholar 

  31. M.C. Somani: Ph.D. Thesis, Banaras Hindu University, Banaras, India, 1994.

    Google Scholar 

  32. K. Bhanu Sankara Rao, M. Valson, R. Sandhya, S.L. Mannan, and P. Rodriguez:Trans. Ind. Inst. Met., 1991, vol. 44, p. 355.

    Google Scholar 

  33. L.H. de Almedia, I. Le May, and S.N. Monterio: inStrength of Metals and Alloys (ICSMA7), H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, 1986, vol. 1, p. 337.

    Google Scholar 

  34. K.G. Samuel, S.L. Mannan, and P. Rodriguez:Acta Metall., 1988, vol. 36, p. 2323–27.

    Article  CAS  Google Scholar 

  35. S.L. Mannan, K.G. Samuel, and P. Rodriguez:Trans. Ind. Inst. Met., 1991, vol. 44, p. 355.

    Google Scholar 

  36. C.F. Jenkins and G.V. Smith:Trans. AIME, 1969, vol. 245, p. 2149–56.

    CAS  Google Scholar 

  37. K.S.B. Rose and S.G. Glover:Acta Metall., 1966, vol. 14, p. 1505–16.

    Article  CAS  Google Scholar 

  38. C.F. Jenkins and G.V. Smith:J. Iron Steel Inst., 1968, vol. 206, p. 1267–72.

    CAS  Google Scholar 

  39. S. Venkadesan, C. Phaniraj, P.V. Sivaprasad, and P. Rodriguez:Acta Metall. Mater., 1992, vol. 40, p. 569–80.

    Article  CAS  Google Scholar 

  40. P. Venugopal, S. Venugopal, and V. Seetharaman:J. Mater. Process. Technol., 1990, vol. 21, pp. 91–100.

    Article  Google Scholar 

  41. S. Venugopal, S. Venkadesan, S.L. Mannan, and P. Venugopal:J. Mater. Process. Technol., 1992, vol. 30, p. 245.

    Article  Google Scholar 

  42. S. Venugopal: Master’s Thesis, Indian Institute of Technology, Madras, 1986.

    Google Scholar 

  43. G.B. Olson and M. Cohen:J. Less-Common Met., 1972, vol. 28, p. 107.

    Article  CAS  Google Scholar 

  44. P.C. Maxwell, A. Goldberg, and J.C. Shyne:Metall. Trans., 1974, vol. 5, pp. 1305–18.

    Article  CAS  Google Scholar 

  45. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith:Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    Google Scholar 

  46. M.G. Stout and F.S. Follonsbee:Trans. ASME, 1986, vol. 108, p. 344.

    CAS  Google Scholar 

  47. T. Angel:J. Iron Steel Inst., 1954, vol. 177, p. 165.

    CAS  Google Scholar 

  48. L.E. Murr, K.P. Studhammer, and S.S. Hecker:Metall. Trans. A, 1982, vol. 13A, pp. 627–35.

    Google Scholar 

  49. D. Padmavardhani: Ph.D. Thesis, Indian Institute of Science, Bangalore, 1993.

    Google Scholar 

  50. William Roberts: inDeformation, Processing and Structure, George Krauss, ed., ASM, Metals Park, OH, 1984, pp. 109–84.

    Google Scholar 

  51. S. Venugopal, C. Ravishankar, S.L. Mannan, and Y.V.R.K. Prasad:Scripta Metall. Mater., 1994, vol. 30, pp. 1611–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S. VENUGOPAL, Scientific Officer, on leave from the Materials Development Division, Indira Gandhi Centre for Atomic Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venugopal, S., Mannan, S.L. & Prasad, Y.V.R.K. Optimization of cold and warm workability in 304 stainless steel using instability maps. Metall Mater Trans A 27, 119–126 (1996). https://doi.org/10.1007/BF02647752

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647752

Keywords

Navigation