Skip to main content
Log in

Magnetic anisotropy predictions from texture measurements using a selected-depth technique

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The correlation of textures with certain physical properties has been studied extensively for crystalline materials. Texture measurements have usually been performed using composite specimens. With a single measurement, these provide a through-thickness textural average. While this may be appropriate for the prediction of properties that are controlled by bulk characteristics (core loss, elastic modulus,etc.), the composite technique may not accurately predict properties that are controlled by the near-surface material volumes. This is especially true for rolled materials, which often possess through-thickness texture gradients. One such surface-sensitive property is magnetic permeability. In this case, the single composite measurement could be replaced by several measurements performed in the rolling plane at selected depths. Using available software, the unmeasured rims of pole figures can be accurately completed for harmonic orientation distribution function (ODF) calculation. This study consists of examples where the selected-depth technique was used for permeability and for core-loss predictions for a motor lamination steel. An example is provided showing how emphasis on near-surface textures improved the permeability prediction for a specimen possessing a texture gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.B. Hutchinson and J.G. Swift:Texture, 1972, vol. 1, pp. 117–23.

    Google Scholar 

  2. P.R. Morris and J.W. Flowers:Texture Cryst. Solids, 1981, vol. 4, pp. 129–41.

    CAS  Google Scholar 

  3. R.C. Arroyo: Master's Thesis, Illinois Institute of Technology, Chicago, IL, 1982.

    Google Scholar 

  4. R.C. Arroyo, ET. Stephenson, and J.S. Kallend:Proc. 8th Int. Conf. on Textures of Materials, J.S. Kallend and G. Gottstein, eds., TMS-AIME, Warrendale, PA, 1988, pp. 849–53.

    Google Scholar 

  5. G.J. Davies, D.J. Goodwill, and J.S. Kallend:Metall. Trans., 1972, vol. 3, pp. 1627–31.

    Article  CAS  Google Scholar 

  6. L.G. Schultz:J. Appl. Phys., 1949, vol. 29, pp. 1030–33.

    Article  Google Scholar 

  7. L.K. Jetter and B.S. Borie:J. Appl. Phys., 1953, vol. 24, pp. 532–35.

    Article  CAS  Google Scholar 

  8. J.A. Elias and A.J. Heckler:Trans. TMS-AIME, 1967, vol. 239, pp. 1237–41.

    Google Scholar 

  9. P.I. Welch:Texture Cryst. Solids, 1980, vol. 4, pp. 99–110.

    Google Scholar 

  10. S.L. Lopata and E.B. Kula:Trans. TMS-AIME, 1962, vol. 224, pp. 865–66.

    CAS  Google Scholar 

  11. P.R. Morris, R.E. Hook, and G.W. Whelan:Textures Microstruct., 1992, vol. 19, pp. 1–8.

    Google Scholar 

  12. J.F. Held:Trans. TMS-AIME, 1967, vol. 239, pp. 573–76.

    CAS  Google Scholar 

  13. M. Matsuo, T. Sakai, and Y. Suga:Metall. Trans. A, 1986, vol. 17A, pp. 1313–22.

    CAS  Google Scholar 

  14. G. Lyudkovsky, A.G. Preban, and J.M. Shapiro:J. Appl. Phys., 1982, vol. 53, pp. 2419–21.

    Article  CAS  Google Scholar 

  15. H. Gerber, J. Bularzik, and R. Judd: Paper presented at the 12th Annual Conf. on Properties and Applications of Magnetic Materials, Chicago, IL, 1993.

  16. J.S. Kallend, U.F. Kocks, A.D. Rollet, and H.-R. Wenk:Mater. Sci. Eng., 1991, vol. A132, pp. 1–11.

    Google Scholar 

  17. D.J. Willis:Met. Forum, 1978, vol. 1, pp. 79–94.

    CAS  Google Scholar 

  18. R.-J. Roe:J. Appl. Phys., 1965, vol. 36, pp. 2024–31.

    Article  CAS  Google Scholar 

  19. R.-J. Roe:J. Appl. Phys., 1966, vol. 37, pp. 2069–72.

    Article  CAS  Google Scholar 

  20. H.J. Bunge:Z. Metallkd., 1965, vol. 56, pp. 872–74.

    CAS  Google Scholar 

  21. R.O. Williams:Trans. TMS-AIME, 1968, vol. 242, pp. 105–15.

    CAS  Google Scholar 

  22. S. Matthies and G.W. Vinel:Phys. Status Solidi B, 1982, vol. 112, pp. k111-k120.

    Google Scholar 

  23. D. Ruer and A. Vadon: inQuantitative Texture Analysis., H.J. Bunge and C. Esling, eds., DGM, Oberursel, Germany, 1986, pp. 343–81.

    Google Scholar 

  24. R.E. Hook:Metall. Trans. A, 1993, vol. 24A, pp. 2009–19.

    CAS  Google Scholar 

  25. T. Kozina and J.A. Szpunar:Textures Microstruct., 1991, vols. 14–18, pp. 555–60.

    Google Scholar 

  26. E. Tenckhoff:J. Appl. Phys., 1970, vol. 41, pp. 3944–48.

    Article  CAS  Google Scholar 

  27. U.F. Kocks:Proc. 8th Int. Conf. on Textures of Materials, J.S. Kallend and G. Gottstein, eds., TMS-AIME, Warrendale, PA, 1988, pp. 31–36.

    Google Scholar 

  28. P.N. Goss:Trans. ASM, 1935, vol. 23, pp. 511–44.

    CAS  Google Scholar 

  29. P. Blanford, J.A. Szpunar, D. Daniel, and J.J. Jonas:Textures Microstruct., 1991, vols. 14–18, pp. 525–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.P. Magnetic anisotropy predictions from texture measurements using a selected-depth technique. Metall Mater Trans A 26, 1535–1542 (1995). https://doi.org/10.1007/BF02647604

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647604

Keywords

Navigation