Skip to main content
Log in

Microstructural study of the interface in laser-clad Ni-Al bronze on Al alloy AA333 and its relation to cracking

  • Surface Treatment
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The interface toughness between a laser clad and the substrate determines whether the cladding is useful for engineering application. The objective of this investigation is to correlate the interface properties of laser-clad Ni-AI bronze on Al alloy AA333 with the microstructure and crystal structure of the interface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy (EDX) are used to examine the interface. In a good clad track, the interface is an irregular curved zone with a varying width (occasionally keyholing structure) from 30 to 150 μm. A compositional transition from the Cu-rich clad (83 wt pct Cu) to the Al-rich substrate (3.2 wt pct Cu) occurs across this interface. Three phases in the interface are identified in TEM: Al solid solution, θ phase, and γ1 phase, as described in the Cu-Al binary phase diagram. In a good clad track, the θ and γ1 phases are distributed in the Al solid solution. In a clad track with cracks, the interface structure spreads to a much larger scale from 300 μm to the whole clad region. Large areas of θ and γ1 phases are observed. The mechanism of cracking at the interface is related to the formation of a twophase region of θ and γ1 phases. To understand the microstructure, a nonequilibrium quasibinary Cu-Al phase diagram is proposed and compared with the equilibrium binary Cu-Al phase diagram. It is found that the occurrence of many phases such as η1η2, ζ1, ζ2, ε1, ε2, γ0, β0, and β, as described in the equilibrium binary Cu-Al phase diagram, is suppressed by either the cladding process or by the alloying elements. The three identified phases (Al solid solution, θ phase, and γ1, phase) showed significant extension of solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ribaudo, S. Sircar, and J. Mazumder:Metall. Trans. A, 1989, vol. 20A, pp. 2489–97.

    CAS  Google Scholar 

  2. S. Sircar, C. Ribaudo, and J. Mazumder:Metall. Trans. A, 1989, vol. 20A, pp. 2267–77.

    CAS  Google Scholar 

  3. J. Singh and J. Mazumder:Metall. Trans. A, 1987, vol. 18A, pp. 313–22.

    CAS  Google Scholar 

  4. J. Singh, K. Nagarathnam, and J. Mazumder:High Temp. Technol. 1987, vol. 5, pp. 131–37.

    CAS  Google Scholar 

  5. Y. Liu, J. Mazumder, and K. Shibata:Metall. Mater. Trans. B, 1994, vol. 25B, pp. 425–34.

    CAS  Google Scholar 

  6. Y. Liu, J. Mazumder, and K. Shibata:Metall. Mater. Trans. B, 1994, vol. 25B, pp. 749–59.

    CAS  Google Scholar 

  7. Y. Liu, J. Mazumder, and K. Shibata:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 37–46.

    Article  CAS  Google Scholar 

  8. Y. Liu, J. Mazumder, and K. Shibata:Acta Metall., 1994, vol. 42, pp. 1763–68.

    Article  CAS  Google Scholar 

  9. Y. Liu, J. Mazumder, and K. Shibata:Acta Metall., 1994, vol. 42, pp. 1755–60.

    Article  CAS  Google Scholar 

  10. J.L. Murray:Int. Met. Rev., 1985, vol. 30 (5), pp. 211–33.

    CAS  Google Scholar 

  11. Binary Alloy Phase Diagram, T.B. Massalski, J.L. Murray, L.H. Bennet, and H. Baker, eds., ASM INTERNATIONAL, Metals Park, OH, 1986, pp. 103–08.

    Google Scholar 

  12. B.F. Buxton, J.A. Eades, J.W. Steeds, and G.M. Rackham:Phil. Trans. R. Soc. London, 1976, vol. 281, pp. 171–94.

    CAS  Google Scholar 

  13. M. Tanaka, R. Saito, and H. Sekii:Acta Crystallogr., 1983, vol. A39, pp. 357–68.

    CAS  Google Scholar 

  14. J.W. Steeds:Introduction to Analytical Electron Microscopy, Plenum Press, New York, NY, 1979, pp. 387–422.

    Google Scholar 

  15. S. Westman:Acta Chem. Scand., 1965, vol. 19, pp. 1411–19.

    CAS  Google Scholar 

  16. O.V. Heidenstan, A. Johansson, and S. Westman:Acta Chem. Scand., 1968, vol. 22, pp. 653–61.

    Article  Google Scholar 

  17. A.J. Bradley and P.J. Jones:Inst. Met., 1933, vol. 51, pp. 131–56.

    Google Scholar 

  18. A.J. Bradley, H.J. Goldschmidt, and H.J. Lipson:Inst. Met., 1938, vol. 63, pp. 149–61.

    Google Scholar 

  19. M.E. Schlienger, J.T. Stanley, and H.L. Fraser: “Diffract,” Virtual Laboratories, Alburquerque, NM.

  20. Smithells Metals Reference Book, E.A. Brandes, ed., Butterworth and Co., Boston, MA, 1983, pp. 6–56.

    Google Scholar 

  21. J.B. Friauf:J. Am. Chem. Soc., 1927, vol. 49, pp. 3107–14.

    Article  CAS  Google Scholar 

  22. Pearson's Handbook of Cristallographie Data for Intermetallic Phases, 6th ed., Eric A. Brandes, ed., Butterworth and Co., Boston, MA, 1986, pp. 943, 1922, 2864, and 2888.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Visiting Research Associate, Department of Mechanical and Industrial Engineering, Center for Laser Aided Material Processing, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Mazumder, J. & Shibata, K. Microstructural study of the interface in laser-clad Ni-Al bronze on Al alloy AA333 and its relation to cracking. Metall Mater Trans A 26, 1519–1533 (1995). https://doi.org/10.1007/BF02647603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647603

Keywords

Navigation