Skip to main content
Log in

Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermodynamics have long been applied to our understanding of the reactive wetting phenomena in metal-ceramic joining. We postulate the existence of a “solvent effect” due to the interaction between the reactive element addition and the brazing alloy. This effect plays a significant role in reactive wetting. By taking this effect into account, more realistic reactivities of different reactive element additions into a given brazing base alloy are predicted. Irreversible thermodynamics are also used to characterize the driving forces for reactive metal-ceramic joining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α:

equilibrium progressive factor

γ:

activity coefficient

Г:

surface excess

ν, ξ:

chemical stoichiometries of compound

Ξ:

=[ΔG o(ReXν - ΔH M(Re)/gn]

σ:

surface tension

μ:

chemical potential

Π:

surface area

ρ:

density

Θ:

contact angle

ω:

= (L 1w -L wgl Г i )R

a :

activity

G :

Gibbs energy

R:

gas constant

T :

temperature

H M :

partial mole enthalphy of mixing

x :

mole fraction

S, s :

entropy, entropy per unit mass

U, u :

internal energy, internal energy per unit mass

p :

pressure

V :

volume

N, n :

moles of component, moles of component per unit mass

v :

velocity

t :

time

J :

flux

K :

rate of chemical reaction

F :

body force

g :

acceleration due to gravity

A :

chemical affinity

e :

surface area per unit mass

L :

phenomenological coefficient

References

  1. I.A. Aksay, C.E. Hoge, and J.A. Pask:J. Phys. Chem., 1974, vol. 78, p. 1178.

    Article  CAS  Google Scholar 

  2. J.E. McDonald and J.G. Eberhart:TMS-AIME, 1965, vol. 233, p. 512.

    CAS  Google Scholar 

  3. D. Chatain, I. Rivollet, and N. Eustathopoulos:J. Chim. Phys., 1986, vol. 83, p. 561.

    CAS  Google Scholar 

  4. F.G. Yost and A.D. Romig, Jr.:Mater. Res. Soc. Symp. Proc, 1988, vol. 108, p. 385.

    CAS  Google Scholar 

  5. P.R. Chidambaram, G.R. Edwards, and D.L. Olson:Metall. Trans. B, 1992, vol. 23B, pp. 215–22.

    CAS  Google Scholar 

  6. E.T. Turkdogan:Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, p. 93.

    Google Scholar 

  7. R.R. Kapoor and T.W. Eagar:Metall. Trans. B, 1989, vol. 20B, pp. 919–24.

    CAS  Google Scholar 

  8. R.R. Kapoor and T.W. Eagar:Ceramic Engineering and Science Proceedings, American Ceramic Society, Westerville, OH, 1989, p. 1613.

    Google Scholar 

  9. M. Naka and I. Okamoto:Trans. JWRI, 1985, vol. 14, pp. 29–34.

    CAS  Google Scholar 

  10. A.R. Miedema, F.R. de Boer, and R. Boom:CALPHAD, 1977, vol. 1, p. 341.

    Article  CAS  Google Scholar 

  11. C. Wagner:Thermodynamics of Alloys, Addison-Wesley Press Inc., Cambridge, MA, 1952, p. 25.

    Google Scholar 

  12. L.B. Pankrantz, J.M. Stuve, and N.A. Gokcen:Thermodynamic Data for Mineral Technology, U.S. Bureau of Mines Bull. 677, U.S. Government Printing Office, Washington, DC, 1984.

    Google Scholar 

  13. J.J. Pak, M.L. Santella, and R.J. Fruehan:Metall. Trans. B, 1990, vol. 21B, pp. 349–55.

    CAS  Google Scholar 

  14. P. Glasdorff and I. Prigogine:Physica, 1964, vol. 30, p. 351.

    Article  Google Scholar 

  15. R.B. Bird, W.E. Steward, and E.N. Lightfoot:Transport Phenomena, John Wiley & Sons, Inc., New York, NY, 1960.

    Google Scholar 

  16. S.R. de Groot and P. Mazur:Non-Equilibrium Thermodynamics, North Holland Publishing Co., Amsterdam, 1962.

    Google Scholar 

  17. T. Young:Phil. Trans. R. Soc. London, 1805, vol. 95, p. 65.

    Article  Google Scholar 

  18. F. Brochard-Wyart and P.G. de Gennes:Adv. Colloid Interface Sci., 1992, vol. 39, p. 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Lannutti, J.J. Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics. Metall Mater Trans A 26, 1499–1505 (1995). https://doi.org/10.1007/BF02647601

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647601

Keywords

Navigation