Skip to main content
Log in

Infiltration and wetting of alumina participate preforms by aluminum and aluminum-magnesium alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The infiltration and wetting of alumina participates by Al and by Al-Mg alloys was studied through pressure infiltration experiments. In these experiments, a noninvasive capacitance technique was used to determine the infiltration front position as a function of time. An unsaturated slug flow model was used to interpret the infiltration results and determine capillary pressures characteristic of the infiltration process. The characteristic capillary pressures for Al, Al-2Mg, and Al-3Mg at 750 °C and Al-2Mg at 850 °C were not significantly different. Therefore, contrary to usual belief, Mg did not significantly aid the pressure infiltration process. At 750 °C, the maximum values of the contact angle calculated from these capillary pressures were 106 deg for Al and 105 deg for Al-2Mg and Al-3Mg. These contact angle values indicate substantial removal of the oxide layer on the surface of the liquid metal during the infiltration process. The small difference in the contact angles indicates that magnesium had little effect on the wetting of alumina by aluminum. The small effect of Mg on the wetting may be due to absence of reactive wetting at the infiltration speeds present in the experiments and to partial disruption of the oxide layer on the surface of the liquid metal during the infiltration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Weirauch:J. Phys. (Paris), 1988, vol. 49, pp. C5:387-C5:394.

    Article  Google Scholar 

  2. D.A. Weirauch:J. Mater. Res., 1988, vol. 3, pp. 729–39.

    CAS  Google Scholar 

  3. B.C. Pai and R. Subrat:Mater. Sci. Eng., 1976, vol. 24, pp. 31–44.

    Article  CAS  Google Scholar 

  4. M.K. Aghajanian, M.A. Rocazella, J.T. Burke, and S.D. Keck:J. Mater. Sci., 1991, vol. 26, pp. 447–54.

    Article  CAS  Google Scholar 

  5. D. Hillel:Soil and Water: Physical Principles and Processes, Academic Press, New York, NY, 1971, p. 114.

    Google Scholar 

  6. L.R. White:J. Colloid Interface Sci., 1982, vol. 90, pp. 536–38.

    Article  CAS  Google Scholar 

  7. S.-Y. Oh, J.A. Cornie, and K.C. Russell:Metall. Trans. A, 1989, vol. 20A, pp. 527–32.

    CAS  Google Scholar 

  8. A. Mortensen and T. Wong:Metall. Trans. A, 1990, vol. 21A, pp. 2257–63.

    CAS  Google Scholar 

  9. Y.-W. Yang, G. Zografi, and E.E. Miller:J. Colloid Interface Sci., 1988, vol. 122, pp. 24–34.

    Article  CAS  Google Scholar 

  10. T.R. Fletcher, J.A. Cornie, and K.C. Russell:Mater. Sci. Eng., 1991, vol. A144, pp. 159–63.

    CAS  Google Scholar 

  11. T.R. Jonas: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1993.

    Google Scholar 

  12. A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings:Metall. Trans. A, 1989, vol. 20A, pp. 2535–47.

    CAS  Google Scholar 

  13. J.R. Philip:Soil Sci., 1958, vol. 85, pp. 278–86.

    Article  Google Scholar 

  14. N.R. Draper and H. Smith:Applied Regression Analysis, Wiley, New York, NY, 1966, pp. 18–21.

    Google Scholar 

  15. Smithells Metals Reference Book, C.A. Brandes, ed., Butterworth and Co., Boston, MA, 1983, p. 7.

    Google Scholar 

  16. E. Gebhardt, M. Becker, and S. Dorner:Aluminium (Dusseldorf), 1955, vol. 31, pp. 315–21.

    Google Scholar 

  17. C. Garcia-Cordovilla, E. Louis, and A. Pamies:J. Mater. Sci., 1986, vol. 21, pp. 2787–92.

    Article  CAS  Google Scholar 

  18. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos:Acta Metall., 1988, vol. 36, pp. 1797–1803.

    Article  CAS  Google Scholar 

  19. J.J. Brennan and J.A. Pask:J. Am. Ceram. Soc., 1968, vol. 51, pp. 569–73.

    Article  CAS  Google Scholar 

  20. A. Alonso, A. Pamies, J. Narciso, C. Garcia-Cordovilla, and E. Louis:Metall. Trans. A, 1993, vol. 24A, pp. 1423–32.

    CAS  Google Scholar 

  21. C.G. Levi, G.J. Abbaschian, and R. Mehrabian:Metall. Trans. A, 1978, vol. 9A, pp. 697–711.

    CAS  Google Scholar 

  22. A.D. McLeod: inFabrication of Pariticulates Reinforced Metal Composites, J. Masounave and F.G. Hamel, eds., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 17–21.

    Google Scholar 

  23. V. Laurent, D. Chatain, and N. Eustathopoulos:Mater. Sci. Eng., 1991, vol. 135A, pp. 89–94.

    Google Scholar 

  24. J.G. Li, L. Coudurier, and N. Eustathopoulos:J. Mater. Sci., 1989, vol. 24, pp. 1109–16.

    Article  CAS  Google Scholar 

  25. A. Mortensen and I. Jin:Int. Mater. Rev., 1992, vol. 37, pp. 101–28.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonas, T.R., Cornie, J.A. & Russell, K.C. Infiltration and wetting of alumina participate preforms by aluminum and aluminum-magnesium alloys. Metall Mater Trans A 26, 1491–1497 (1995). https://doi.org/10.1007/BF02647600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647600

Keywords

Navigation