Skip to main content
Log in

Nanometer-scale crack initiation and propagation behavior of Fe3Al-based intermetallic alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The initiation and propagation of nanometer-scale cracks have been investigated in detail byin situ transmission electron microscope (TEM) observations for the intermetallic compound Fe3Al under mode I loading. No dislocation was detected and no dislocation emission was found when cracks propagated directly from the thin edge of a double-jet hole where the thickness of the foil was below a critical thinness. Thinning took place in the thicker region of the foils because a great number of dislocations were emitted from the crack tip, and then an electron semitransparent region was formed in front of the crack tip. Following this process, a dislocation-free zone (DFZ) was formed. The maximum normal stress occurs in the zone. Nanometer-scale cracks initiated discontinuously ahead of the main crack tip in the highly stressed zone. The size of the smallest nanocrack observed was about 3 nm, and the tip radius of the nanocracks was less than 1 nm when the applied loading was low. The radius of the main crack tip was about 2.5 nm. The distances between discontinuous nanocracks and the main crack tip were about 5 to 60 nm, depending on the applied tensile loading. A relationship was found between the tensile loading and the nanocrack distance from the crack tip. The distance increases with the tensile loading, which is consistent with an “elastic-plastic” theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Cottrell:Trans. AIME, 1958, vol. 212, p. 192.

    CAS  Google Scholar 

  2. A.N. Stroh:Proc. R. Soc. London A, 1955, vol. 232, p. 548.

    Article  Google Scholar 

  3. M.H. Kamdar:Metall. Trans. A, 1971, vol. 2, pp. 485–89.

    CAS  Google Scholar 

  4. M.J. Lii, X.F. Chen, Y. Katz, and W.W. Gerberich:Acta Metall., 1990, vol. 38, p. 2435.

    Article  CAS  Google Scholar 

  5. H. Huang and W.W. Gerberich:Acta Metall., 1992, vol. 40, p. 2873.

    Article  CAS  Google Scholar 

  6. J.R. Rice and R. Thomson:Phil. Mag., 1974, vol. 29, p. 73.

    CAS  Google Scholar 

  7. J. Weertman, L.-H. Lin, and R. Thomson:Acta Metall., 1983, vol. 31, p. 473.

    Article  Google Scholar 

  8. S.H. Dai and J.C.M. Li:Scripta Metall., 1982, vol. 16, p. 183.

    Article  CAS  Google Scholar 

  9. R. Thomson:Scripta Metall., 1986, vol. 20, p. 1473.

    Article  Google Scholar 

  10. J.C.M. Li:Scripta Metall., 1986, vol. 20, p. 1477.

    Article  Google Scholar 

  11. I.H. Lin and R. Thomson:Acta Metall., 1986, vol. 34, p. 187.

    Article  CAS  Google Scholar 

  12. W.L. Li and J.C.M. Li:Phil. Mag. A, 1989, vol. 59, p. 1245.

    Google Scholar 

  13. X. Chen, T. Feocke, M. Lii, Y. Katz, and W.W. Gerberich:Eng. Fract. Mech., 1990, vol. 35, p. 987.

    Article  Google Scholar 

  14. W. Zielinski, M.J. Lii, and W.W. Gerberich:Acta Metall., 1992, vol. 40, p. 2861.

    Article  CAS  Google Scholar 

  15. P.G. Marsh, W. Zielinski, H. Huang, and W.W. Gerberich:Acta Metall., 1992, vol. 40, p. 2883.

    Article  CAS  Google Scholar 

  16. S.H. Chen, Y. Katz, and W.W. Gerberich:Phil. Mag. A, 1991, vol. 63, p. 131.

    CAS  Google Scholar 

  17. Q.Z. Chen, W.Y. Chu, and J.M. Xiao:Sci. China A, in press.

  18. Y. Zhang, W.Y. Chu, and J.M. Xiao:Sci. China, in press.

  19. K.W. Gao, W.Y. Chu, and J.M. Xiao:Scripta Metall., in press.

  20. C.T. Liu and K.S. Kumar:J. Min. Met. Mater. Soc., 1993, vol. 45(5), p. 38.

    CAS  Google Scholar 

  21. C.G. McKamey, J.H. DeVan, P.F. Tortorell, and V.K. Sikka:J. Mater. Res., 1991, vol. 6, p. 1779.

    CAS  Google Scholar 

  22. J.A. Horton, C.T. Liu, and C.C. Koch: inHigh-Temperature Alloys: Theory and Design, J.O. Stiegler, ed., TMS, Warrendale, PA, 1984, p. 309.

    Google Scholar 

  23. M.H. Yoo and C.L. Fu:Mater. Sci. Eng. A, 1992, vol. 153, p. 470.

    Article  Google Scholar 

  24. H. Inouye: inHigh-Temperature Intermetallic Alloys, Materials Research Society Proceedings, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, p. 255.

    Google Scholar 

  25. L.J. Qiao, X. Mao, and C.Z. Chen: unpublished research, 1994.

  26. S.M. Ohr:Mater. Sci. Eng., 1985, vol. 72, p. 1.

    Article  CAS  Google Scholar 

  27. H.G.F. Wilsdorf:Mater. Sci. Eng., 1983, vol. 59, p. 1.

    Article  CAS  Google Scholar 

  28. H.G.F. Wilsdorf:Acta Metall., 1982, vol. 30, p. 1247.

    Article  CAS  Google Scholar 

  29. W.W. Gerberich and T.J. Foecke:Hydrogen Effects on Material Behavior, R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 1989, p. 687.

    Google Scholar 

  30. C.R. Barrett, W.D. Nix, and A.S. Tetelman:The Principles of Engineering Materials, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973, p. 243.

    Google Scholar 

  31. L.P. Pook and R.A. Smith: inFracture Mechanics, Proceedings of a Conference at Cambridge University, R.A. Smith, ed., 1979, p. 64.

  32. J.A. Horton and S.M. Ohr:J. Mater. Sci., 1982, vol. 17, p. 3140.

    Article  Google Scholar 

  33. J.A. Horton: Oak Ridge National Laboratory, Oak Ridge, TN, private communication, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, L.J., Mao, X. & Chen, C.Z. Nanometer-scale crack initiation and propagation behavior of Fe3Al-based intermetallic alloy. Metall Mater Trans A 26, 1461–1469 (1995). https://doi.org/10.1007/BF02647597

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647597

Keywords

Navigation