Skip to main content
Log in

Local fatigue damage accumulation around notch attending crack initiation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The subsequent recrystallization technique was used to study the process of local damage accumulation around a notch under conditions of low-cycle fatigue. A 0.8-in. compact tension specimen of 304 stainless steel with a notch radius of 1 mm was used. The accumulated plastic zone around notch increases with the number of cyclesN. The accumulated plastic strain within the zone also increases withN, producing the strain gradient (damage gradient). A fatigue crack initiates when the accumulated plastic strain at the notch root reaches a critical value equal to the fracture strain of the material; that is, when the accumulated plastic work at the crack initiation site becomes critical. The fatigue crack emanating from a notch root grows through the pre-existing damaged zone. It is shown that this local damage accumulation approach can explain the fast growth of a short crack from a notch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Jack and A.T. Price:Int. J. Fract. Mech., 1970, vol. 6, pp. 401–09.

    Google Scholar 

  2. J.M. Barson and R.C. McNicol:Fracture Toughness and Slow Stable Cracking, ASTM STP-559, ASTM, Philadelphia, PA, 1974, pp. 183–204.

    Google Scholar 

  3. Y.H. Kim, T. Mura, and M.E. Fine:Metall. Trans. A, 1978, vol. 9A, pp. 1679–83.

    CAS  Google Scholar 

  4. P.W. Kao and J.G. Byrne:Metall. Trans. A, 1982, vol. 13A, pp. 855–64.

    Google Scholar 

  5. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Fracture Mechanics 16th Symp., ASTM STP-868, ASTM, Philadelphia, PA, 1985, pp. 392–405.

    Google Scholar 

  6. L. Baotong and Z. Xiulin:Fatigue Fract. Eng. Mater. Struct., 1992, vol. 15, pp. 1213–21.

    Article  CAS  Google Scholar 

  7. A. Baus, H.P. Lieurade, G. Sanz, and M. Truchon:Flaw Growth and Fracture, ASTM STP-631, ASTM, Philadelphia, PA, 1977, pp. 96–111.

    Google Scholar 

  8. T.H. Topper, R.M. Wetzel, and J. Morrow:J. Mater., 1969, vol. 4, pp. 200–09.

    Google Scholar 

  9. K. Saanouni and C. Bathias:Eng. Fract. Mech., 1982, vol. 16, pp. 695–706.

    Article  CAS  Google Scholar 

  10. M. Truchon:Low-Cycle Fatigue and Life Prediction, ASTM STP- 770, ASTM, Philadelphia, PA, 1982, pp. 254–68.

    Google Scholar 

  11. G.U. Oppel and P.W. Hill:Exp. Mech., 1964, vol. 4, pp. 206–11.

    Article  Google Scholar 

  12. G.T. Hahn, M. Serrate, and A.R. Rosenfield:Int. J. Fract. Mech., 1971, vol. 7, pp. 435–46.

    Google Scholar 

  13. T.V. Duggan, M.T. Lowcock, and B.C. Staples:J. Mech. Eng. Sci., 1979, vol. 21, pp. 263–73.

    Google Scholar 

  14. M.N. James, CD. Imitrion, and H.D. Chandler:Fatigue Fract. Eng. Mater. Struct., 1989, vol. 12, pp. 213–25.

    Article  Google Scholar 

  15. M. Giglio and L. Vergani:Mechanical Behaviour of Materials-6, Proc. Int. Conf. Materials, Kyoto, Pergamon Press, Headington Hill Hall, Oxford, United Kingdom, 1991, pp. 219–26.

    Google Scholar 

  16. M.M. Hommouda, R.A. Smith, and K.J. Miller:Fatigue Eng. Mater. Struct., 1979, vol. 2, pp. 139–54.

    Article  Google Scholar 

  17. C. Bathias, M. Gabra, and D. Aiaga:Low-Cycle Fatigue and Life Prediction, ASTM STP-770, ASTM, Philadelphia, PA, 1982, pp. 23–44.

    Google Scholar 

  18. G.T. Hahn, R.G. Hoagland, and A.R. Rosenfield:Metall. Trans., 1972, vol. 3, pp. 1189–1202.

    Article  CAS  Google Scholar 

  19. Y. lino:Eng. Fract. Mech., 1975, vol. 7, pp. 205–18.

    Article  Google Scholar 

  20. Y. lino:Metal Sci., 1976, vol. 10, pp. 159–64.

    Article  Google Scholar 

  21. T. Shoji:Metal Sci., 1976, vol. 10, pp. 165–71.

    Article  Google Scholar 

  22. Y. lino:Eng. Fract. Mech., 1979, vol. 12, pp. 279–99.

    Article  Google Scholar 

  23. Y. lino:Metall. Trans. A, 1980, vol. 11A, pp. 1939–50.

    Google Scholar 

  24. T. Yokobori, K. Sato, and Y. Yamaguchi:Rep. Res. Inst. Strength Fract. Mater. Tohoku Univ., 1970, vol. 6, pp. 49–67.

    Google Scholar 

  25. J. Awatani, K. Katagiri, and T. Shiraishi:Metall. Trans. A, 1976, vol. 7A, pp. 807–10.

    CAS  Google Scholar 

  26. Y. lino:J. Mater. Sci. Lett., 1992, vol. 11, pp. 1253–56.

    Article  Google Scholar 

  27. S. Miyazaki, K. Shibata, and H. Fusita:Acta Metall., 1979, vol. 27, pp. 855–62.

    Article  CAS  Google Scholar 

  28. U.T. Troshenko, A.V. Prokopenko, and U.N. Yorgov:Fatigue Fract. Eng. Mater. Struct., 1988, vol. 11, pp. 123–38.

    Article  Google Scholar 

  29. K. Klesnil and P. Lukas:J. Iron Steel Inst., 1965, vol. 203, pp. 1043–48.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iino, Y. Local fatigue damage accumulation around notch attending crack initiation. Metall Mater Trans A 26, 1419–1430 (1995). https://doi.org/10.1007/BF02647592

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647592

Keywords

Navigation