Skip to main content
Log in

Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recrystallization and grain growth in a 2219/TiC/15p composite were investigated as functions of the amount of deformation and deformation temperature. Both cold and hot deformed samples were annealed at the normal solution treatment temperature of 535 °C. It was shown that large recrystallized grain diameters, relative to the interparticle spacing, could be produced in a narrow range of deformation for samples cold-worked and those hot-worked below 450 °C. For cold-worked samples, between 4 to 6 pct deformation, the recrystallized grain diameters varied from 530 to 66 μm as the amount of deformation increased. Subsequent grain growth was not observed in these recrystallized materials and noncompact grain shapes were observed. For deformations greater than 15 pct, recrystallized grain diameters less than the interparticle spacing were observed and subsequent grain growth produced a pinned grain diameter of 27 μm. The pinned grain diameter agreed well with an empirical model based on three dimensional (3-D) Monte Carlo simulations of grain growth and particle pinning in a two-phase material. Tensile properties were determined as a function of grain size, and it was shown that grain size had a weak influence on yield strength. A maximum in the yield strength was observed at a grain size larger than the normal grain growth and particle-pinned diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Humphreys, W.S. Miller, and M.R. Djazeb:Mater. Sci. Technol., 1990, vol. 6, pp. 1157–66.

    CAS  Google Scholar 

  2. F.J. Humphreys, A. Basu, and M.R. Djazeb: inMetal Matrix Composites-Processing, Microstructure and Properties, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1991, p. 51.

    Google Scholar 

  3. F.J. Humphreys:Acta Metall., 1977, vol. 25, pp. 1323–44.

    Article  CAS  Google Scholar 

  4. B.J. Lowe and B.A. Parker: inRecrystallization '90, T. Chandra, ed., TMS, Warrendale, PA, 1990, p. 225.

    Google Scholar 

  5. F.J. Humphreys:Mater. Sci. Eng. A, 1991, vol. 135, pp. 267–73.

    Article  Google Scholar 

  6. Y.L. Lui, N. Hansen, and D.J. Jensen: inMetal Matrix Composites-Processing, Microstructure and Properties, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1991, p. 67.

    Google Scholar 

  7. Y.L. Lui, N. Hansen, and D.J. Jensen:Mater. Sci. Technol., 1991, vol. 7, pp. 270–75.

    Google Scholar 

  8. M. Ferry, P. Munroe, A. Crosky, and T. Chandra: inMetal Matrix Composites-Processing, Microstructure and Properties, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Ris0 National Laboratory, Roskilde, 1991, p. 337.

    Google Scholar 

  9. M. Ferry, P. Monroe, A. Crosky, T. Chandra:Mater. Sci. Technol., 1992, vol. 8, pp. 43–51.

    CAS  Google Scholar 

  10. N. Hansen:Rev. Metallurgie: Mem. Sci., 1975, vol. 72, pp. 189–203 (in French).

    CAS  Google Scholar 

  11. E. Nes, N. Ryum, and O. Hunden:Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  12. M. Hillert:Acta Metall., 1988, vol. 36, pp. 3177–81.

    Article  CAS  Google Scholar 

  13. A.D. Rollett, D.J. Srolovitz, M.P. Anderson, and R.D. Doherty:Acta Metall., 1992, vol. 40, pp. 3475–95.

    Article  CAS  Google Scholar 

  14. R.D. Doherty and J.W. Martin:J. Inst. Met., 1962, vol. 91, pp. 332–38.

    Google Scholar 

  15. G.M. Vyletel, P.J. Krajewski, D.C. Van Aken, J.E. Allison, and J.W. Jones:Scripta Metall., 1992, vol. 27, pp. 549–55.

    Article  CAS  Google Scholar 

  16. A.R.C. Westwood:Metall. Trans. B, 1988, vol. 19, pp. 155–64.

    Google Scholar 

  17. G.F. Vander Voort: inPractical Applications of Quantitative Metallurgy, ASTM-STP 839, 1984, p. 85.

  18. S.J. Kline and F.A. McClintock:Mech. Eng., 1953, Jan., pp. 3–8.

  19. P.J. Krajewski: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1994.

    Google Scholar 

  20. Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ed., ASM INTERNATIONAL, Metals Park, OH, 1984, p. 122.

    Google Scholar 

  21. M.F. Ashby, J. Harper, and J. Lewis:TMS-AIME, 1969, vol. 245, pp. 413–20.

    CAS  Google Scholar 

  22. C.S. Smith:TMS-AIME, 1948, vol. 175, pp. 15–51.

    Google Scholar 

  23. T. Gladman:Proc. R. Soc., 1966, vol. 294A, pp. 298–309.

    Google Scholar 

  24. C.J. Tweed, N. Hansen, and B. Ralph:Metall. Trans. A, 1983, vol. 14A, pp. 2235–43.

    CAS  Google Scholar 

  25. M.P. Anderson, G.S. Grest, R.D. Doherty, K. Li, and D.J. Srolovitz:Scripta Metall., 1989, vol. 23, pp. 753–58.

    Article  CAS  Google Scholar 

  26. R.M. A ken, Jr. and L. Christodoulou:Scripta Metall. Mater., 1991, vol. 25, pp. 9–14.

    Article  Google Scholar 

  27. G.M. Vyletel: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1994.

    Google Scholar 

  28. B.A. Movchan:Mater. Sci. Eng., 1985, vol. 72, pp. 109–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Aken, D.C., Krajewski, P.E., Vyletel, G.M. et al. Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite. Metall Mater Trans A 26, 1395–1405 (1995). https://doi.org/10.1007/BF02647590

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647590

Keywords

Navigation