Skip to main content
Log in

The entropy production and variable surface tension barriers to nucleation and growth in steady- and quasi-steady state condensing systems

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The quasi-static free energy barrier to nucleation which characterizes classical theory with its spontaneous positive change allowed only by fluctuations has a dynamical analogue in the dissipation function which can undergo a spontaneous negative change by fluctuation only. The need for such a generalization in nucleation theory appears within the steady-state spinodal decomposition of exciton gases in semiconductors to electron-hole drops. Onsager[23] had already suggested in 1931 how one might construct the analogue of the Boltzmann fluctuation probability exp (ΔS/R) as exp [Siτ/R], whereS i is the entropy production rate and t is a characteristic time on the transformation path. That is to say,S i τ corresponds to a path entropy which, in this class of nucleation events, must surmount a negative barrier by fluctuation. Since morphological instabilities near the constitutional supercooling margin in binary, forced-velocity solidification are now known to be of finite amplitude, we briefly examine this behavior in such dynamical terms. The local hydrodynamic theory of gas-liquid spinodal decomposition consists of first-order differential equations, so sinusoidal decompositions are ruled out, and thus, as usually acknowledged, discrete phase separations are to be expected. However, there is noa priori requirement that the droplet should instantaneously achieve the maximum density configuration, since a continuously variable density difference and concomitant gradual increase in the surface tension are allowed by an equation of state in the metastable region. This is a variant of the gradient energy concept. It is suggested that the classical theory of condensation might be usefully modified to the dissipation and variable surface tension format. This construction applied to near critical states is not inconsistent with the theory of Lothe and Pound,[21] which has particular application to highly supersaturated fine-grained spinodal states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Jeffries and L.V. Keldysh:Electron-hole Drops in Semiconductors, North-Holland, Amsterdam, The Netherlands, 1983.

  2. J.S. Kirkaldy:Scripta Metall., 1983, vol. 17, pp. 115–19.

    Article  CAS  Google Scholar 

  3. J.S. Kirkaldy and L.R.B. Patterson:Phys. Rev. A, 1983, vol. 28, pp. 1612–21.

    Article  Google Scholar 

  4. J.S. Kirkaldy, L.R.B. Patterson, and J. Hubert:J. Phys. C: Solid State Phys., 1987, vol. 20, pp. 1313–1411.

    Article  Google Scholar 

  5. I. Iguchi and Y. Suzuki:Phys. Rev. B, 1983, vol. B28, pp. 4043–45.

    Article  Google Scholar 

  6. L.R.B. Patterson:Low Temp. Phys., 1987, vol. 31, pp. 99–113.

    Google Scholar 

  7. J.S. Kirkaldy:Reps. Prog. Physics, 1992, in press.

  8. S.R. de Groot:Thermodynamics of Irreversible Processes, North-Holland Publishing Co., Amsterdam, The Netherlands, 1952.

    Google Scholar 

  9. M. Hillert:Acta Metall., 1961, vol. 9, pp. 525–35.

    Article  CAS  Google Scholar 

  10. J.W. Cahn:Acta Metall., 1961, vol. 9, pp. 795–801.

    Article  CAS  Google Scholar 

  11. J.W. Cahn and J.E. Hilliard:J. Chem. Phys., 1959, vol. 28, pp. 258–67.

    Article  Google Scholar 

  12. C. Zener: Trans. AIME, 1946, pp. 550–61.

  13. T.M. Rogers, K.R. Elder, and C.R. Desai:Phys. Rev. B, 1988, vol. 37, pp. 9638–49.

    Article  Google Scholar 

  14. C. Wagner:Z. Electrochem., 1961, vol. 65, pp. 581–97.

    CAS  Google Scholar 

  15. G.W. Greenwood:Acta Metall., 1956, vol. 4, pp. 243–48.

    Article  CAS  Google Scholar 

  16. S.C. Hardy and P.W. Voorhees:Metall. Trans. A, 1988, vol. 19A, pp. 2713–21.

    CAS  Google Scholar 

  17. T.M. Rice:Solid State Phys., 1977, vol. 32, pp. 1–86.

    CAS  Google Scholar 

  18. J.C. Hensel, T.G. Phillips, and G.A. Thomas:Solid State Physics, 1977, vol. 32, pp. 87–314.

    CAS  Google Scholar 

  19. R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phenomena, John Wiley, New York, NY, 1960, p. 185 et seq.

    Google Scholar 

  20. J.S. Langer and L.A. Turski:Phys. Rev. A, 1973, vol. 8, pp. 3230–43.

    Article  CAS  Google Scholar 

  21. J. Lothe and G.M. Pound:J. Chem. Phys., 1962, vol. 36, pp. 2080–92.

    Article  CAS  Google Scholar 

  22. V. Ruth, J.P. Hirth, and G.M. Pound:J. Chem. Phys., 1988, vol. 88, pp. 7079–87.

    Article  CAS  Google Scholar 

  23. L. Onsager:Phys. Rev., 1931, vol. 37, pp. 2265–79.

    Article  Google Scholar 

  24. R. Becker and W. Döring:Ann. Phys. (Leipzig), 1935, vol. 24, pp. 719–30.

    CAS  Google Scholar 

  25. G.M. Pound:Metall. Trans. A, 1985, vol. 16A, pp. 487–502.

    CAS  Google Scholar 

  26. K.C. Russell:Adv. Colloid Interface Sci., 1980, vol. 18, pp. 205–60.

    Article  Google Scholar 

  27. R.M. Westerwelt: inElectron-hole Drops in Semiconductors, C.D. Jeffries and L.V. Keldych, eds., North-Holland, Amsterdam, The Netherlands, 1983, pp. 187–266.

  28. S. deCheveigné, C. Guthman, P. Korowski, E. Vicente, and H. Biloni:J. Cryst. Growth, 1988, vol. 92, pp. 616–27.

    Article  Google Scholar 

  29. J.S. Kirkaldy:F. Weinberg Symp. on Solidification Processing, J.E. Lait and I.V. Samarasekara, eds., Pergamon Press, Oxford, United Kingdom, 1991, pp. 27–43.

    Google Scholar 

  30. J.S. Kirkaldy and D. Venugopalan:Scripta Metall. Mater., 1991, vol. 25, pp. 2671–76.

    Article  Google Scholar 

  31. DJ. Wollkind and L. Segel:Proc. R. Soc. (London), 1970, vol. 268, pp. 351–80.

    CAS  Google Scholar 

  32. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers:Acta Metall., 1953, vol. 1, pp. 428–37.

    Article  CAS  Google Scholar 

  33. J.S. Kirkaldy:Can. J. Phys., 1959, vol. 37, pp. 739–54.

    CAS  Google Scholar 

  34. R. Trivedi and K. Somboonsuk:Acta Metall., 1985, vol. 33, pp. 1061–68.

    Article  CAS  Google Scholar 

  35. V. Seetharaman, M.A. Eshehnan, and R. Trivedi:Acta Metall., 1988, vol. 36, pp. 1175–85.

    Article  CAS  Google Scholar 

  36. K. Binder:Rep. Prog. Phys., 1987, vol. 50, pp. 738–859.

    Article  Google Scholar 

  37. J.P. Hirth: State University of Washington, Pullman, WA, private communication, 1991.

  38. J.P. Wolfe: University of Illinois, Urbana, IL, private communication, 1980.

  39. D. Venugopalan: University of Wisconsin, Milwaukee, WI, private communication, 1984.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the “G. Marshall Pound Memorial Symposium on the Kinetics of Phase Transformations” presented as part of the 1990 fall meeting of TMS, October 8–12, 1990, in Detroit, Michigan, under the auspices of the ASM/MSD Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkaldy, J.S. The entropy production and variable surface tension barriers to nucleation and growth in steady- and quasi-steady state condensing systems. Metall Trans A 23, 1883–1890 (1992). https://doi.org/10.1007/BF02647538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647538

Keywords

Navigation