Skip to main content

The scaling of nucleation rates

Abstract

The homogeneous nucleation rate,J, forT → T c can be cast into a “corresponding states” form by exploiting scaled expressions for the vapor pressure and for the surface tension, δ. In the vapor-to-liquid case with δ= δ0[T c -T], the classical cluster energy of formation /kT = [16π/3] • Ώ3 [T c -1]3/(lnS)2 = [x0/x]2, where Ώ ≡ δ0/[k ñ2/3] and ñ is liquid number density. [1] The Ώ 2 for normal liquids. (A similar approach can be applied to homogeneous liquid to solid nucleation and to heterogeneous nucleation formalisms using appropriate modifications ofσ and Ώ.[2]) The above [x0/x]2 is sufficiently tenable that in some cases, one can use it to extract approximate critical temperatures from experimental data.[3,4] In this work, we point out that expansion cloud chamber data (for nonane, toluene, and water) are in excellent agreement with lnJ ≈ const. -[x0/x]2 [centimeter-gram-second (cgs) units], and that the constant term is well approximated by ln (Γc), whereT c is the inverse thermal wavelength cubed per second atT =T c . The ln (Γc) is ≈ 60 in cgs units (74 in SI units) for most materials. A physical basis for the latter form, which includes the behavior at smalln, the discrete integer behavior ofn, and a configurational entropy term, τ ln (n), is presented.

This is a preview of subscription content, access via your institution.

References

  1. B.N. Hale:Phys. Rev. A, 1986, vol. 33, pp. 4156–63.

    Article  CAS  Google Scholar 

  2. B.N. Hale: inLecture Notes in Physics, Paul E. Wagner and Gabor Vali, eds., Springer Verlag, New York, NY, 1988, vol. 309, pp. 323–49.

    Google Scholar 

  3. M.S. El-Shall:J. Phys. Chem., 1989, vol. 93, pp. 8253–57.

    Article  CAS  Google Scholar 

  4. B.N. Hale, P. Kemper, and J.A. Nuth:J. Chem. Phys., 1989, vol. 91, pp. 4314–17.

    Article  CAS  Google Scholar 

  5. H.E. Stanley:Introduction to Phase Transitions and Critical Phenomena, Oxford, New York, NY, 1971.

    Google Scholar 

  6. R.C. Reid, J.M. Prausnitz, and BE. Poling:The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, NY, 1986.

    Google Scholar 

  7. B.N. Hale:56th Colloid and Surface Science Symp., Virginia Polytechnic Institute, Blacksburg, VA, 1982.

    Google Scholar 

  8. K. Binder:J. Phys. C, 1980, vol. 4, pp. 51–62.

    Google Scholar 

  9. K. Binder and D. Stauffer:Adv. Phys., 1976, vol. 25, pp. 343–96.

    Article  CAS  Google Scholar 

  10. J.S. Langer and L.A. Turski:Phys. Rev. A, 1973, vol. 8, pp. 3230–43; 1980, vol. 22, pp. 2189-95.

    Article  CAS  Google Scholar 

  11. J.S. Langer and A.J. Schwartz:Phys. Rev. A, 1980, vol. 21, pp. 948–58.

    Article  CAS  Google Scholar 

  12. H. Furukawa and K. Binder:Phys. Rev. A, 1982, vol. 26, pp. 556–66.

    Article  CAS  Google Scholar 

  13. K. Binder:Phys. Rev. A, 1982, vol. 25, pp. 1699–1709.

    Article  CAS  Google Scholar 

  14. J.D. Gunton: inPhase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., Academic Press, New York, NY, 1983, vol. 8, pp. 267–465.

    Google Scholar 

  15. M.F. Collins and A.M. Collins:Phys. Rev. B, 1987, vol. 35, pp. 394–96 (also references 1 through 6 of this article).

    Article  Google Scholar 

  16. B.J.C. Wu, P.P. Wegener, and G.D. Stein:J. Chem. Phys., 1978, vol. 68, pp. 308–18.

    Article  CAS  Google Scholar 

  17. R. McGraw:J. Chem. Phys., 1981, vol. 75, pp. 5514–21.

    Article  CAS  Google Scholar 

  18. R.H. Heist and H. Reiss:J. Chem. Phys., 1973, vol. 59, pp. 665–71.

    Article  CAS  Google Scholar 

  19. R.H. Heist, K.M. Colling, and C.S. Dupuis:J. Chem. Phys., 1976, vol. 65, pp. 5147–54.

    Article  CAS  Google Scholar 

  20. B.J.C. Wu, P.P. Wegener, and G.D. Stein:J. Chem. Phys., 1976, vol. 69, pp. 1776–77.

    Article  Google Scholar 

  21. J.L. Katz and B.J. Ostermier:J. Chem. Phys., 1967, vol. 47, pp. 478–87.

    Article  CAS  Google Scholar 

  22. J.L. Katz:J. Chem. Phys., 1970, vol. 52, pp. 4733–48.

    Article  CAS  Google Scholar 

  23. J.L. Katz, C.J. Scoppa, N.G. Kumar, and P. Mirabel:J. Chem. Phys., 1975, vol. 62, pp. 448–65.

    Article  CAS  Google Scholar 

  24. J.L. Katz, P. Mirabel, C.J. Scoppa, and T.L. Virkler:J. Chem. Phys., 1976, vol. 65, pp. 382–92.

    Article  CAS  Google Scholar 

  25. F.H. MacDougall:Physical Chemistry, Macmillan, New York, NY, 1936, p. 96.

    Google Scholar 

  26. D.H. Rasmussen and S.V. Babu:Chem. Phys. Lett., 1984, vol. 108, pp. 449–52.

    Article  CAS  Google Scholar 

  27. D.H. Rasmussen, M.R. Appleby, G.L. Leedom, S.V. Babu, and R.J. Naumann:J. Cryst. Growth, 1983, vol. 64, pp. 229–38.

    Article  CAS  Google Scholar 

  28. R. Becker and W. Doring:Ann. Phys., 1935, vol. 24, pp. 719–52.

    Article  CAS  Google Scholar 

  29. N.H. Fletcher:The Physics of Rainclouds, Cambridge University, Cambridge, United Kingdom, 1969, ch. 3.

    Google Scholar 

  30. F.F. Abraham:Homogeneous Nucleation Theory, Academic Press, New York, NY, 1974.

    Google Scholar 

  31. Y.B. Zeldovitch:Acta Physicochim. (URSS), 1943, vol. 18, pp. 1–11.

    Google Scholar 

  32. C.H. Hung, M.J. Krasnopoler, and J.L. Katz:J. Chem. Phys., 1988, vol. 90, pp. 1856–65; 1990, vol. 91, p. 7722.

    Article  Google Scholar 

  33. J. Lothe and G.M. Pound:J. Chem. Phys., 1962, vol. 36, pp. 2080–85.

    Article  CAS  Google Scholar 

  34. H. Reiss, J.L. Katz, and E.R. Cohen:J. Chem. Phys., 1968, vol. 48, pp. 5553–60; H. Reiss, inNucleation Phenomena, A.C. Zettlemoyer, ed., Elsevier, New York, NY, 1977, pp. 1–66.

    Article  CAS  Google Scholar 

  35. J.K. Lee, J.A. Barker, and F.F. Abraham:J. Chem. Phys., 1973, vol. 58, pp. 3166–80.

    Article  CAS  Google Scholar 

  36. D.J. McGinty:J. Chem. Phys., 1971, vol. 55, pp. 580–88.

    Article  CAS  Google Scholar 

  37. J.J. Burton:J. Chem. Phys., 1970, vol. 52, pp. 345–52.

    Article  CAS  Google Scholar 

  38. M.R. Hoare and P. Pal:Adv. Phys., 1971, vol. 20, pp. 161–96; 1975, vol. 24, pp. 645-78.

    Article  CAS  Google Scholar 

  39. M.R. Hoare:Adv. Chem. Phys., 1979, vol. 40, pp. 49–60.

    Article  CAS  Google Scholar 

  40. D.J. McGinty:Chem. Phys. Lett., 1972, vol. 13, pp. 525–28.

    Article  CAS  Google Scholar 

  41. N. Garcia and J. Torroja:Phys. Rev. Lett., 1981, vol. 47, pp. 186–90.

    Article  Google Scholar 

  42. R.J. Anderson, R.C. Miller, J.L. Kassner, and D.E. Hagen:J. Atmos. Sci., 1980, vol. 37, pp. 2508–20.

    Article  Google Scholar 

  43. R.C. Miller, R.J. Anderson, J.L. Kassner, and D.E. Hagen:J. Chem. Phys., 1983, vol. 78, pp. 3204–11.

    Article  CAS  Google Scholar 

  44. J.L. Schmitt, R.A. Zalabsky, and G.W. Adams:J. Chem. Phys., 1983, vol. 79, pp. 4496–4501.

    Article  CAS  Google Scholar 

  45. G.W. Adams, J.L. Schmitt, and R.A. Zalabsky:J. Chem. Phys., 1984, vol. 81, pp. 5074–78.

    Article  CAS  Google Scholar 

  46. E.A. Guggenheim:Thermodynamics, 4th ed., North-Holland, Amsterdam, The Netherlands, 1959.

  47. R. LaViolette and R. McGraw: Rockwell International Science Center, Thousand Oaks, CA, private communication, 1990.

  48. B.N. Hale, K.K. Han, and P. Kemper:Bull. Am. Phys. Soc, 1991, vol. 36, p. 646.

    Google Scholar 

  49. W.G. Courtney:J. Chem. Phys., 1961, vol. 35, pp. 2249–50.

    Article  CAS  Google Scholar 

  50. J.L. Katz and M. Blander:J. Stat. Phys., 1972, vol. 4, pp. 55–58.

    Article  Google Scholar 

  51. M.E. Fisher:Physics, 1967, vol. 3, pp. 255–83.

    Google Scholar 

  52. C.S. Kiang, D. Stauffer, G.H. Walker, O.P. Puri, J. Wise, Jr., and E.M. Patterson:J. Atmos. Sci., 1971, vol. 28, pp. 1222–32.

    Article  CAS  Google Scholar 

  53. A. Dillmann and G.E.A. Meier:Chem. Phys. Lett., 1989, vol. 160, pp. 71–74.

    Article  CAS  Google Scholar 

  54. Paul Kemper: Ph.D. Thesis, University of Missouri-Rolla, Rolla, MO, 1990.

    Google Scholar 

  55. P. Kemper and B.N. Hale: inLecture Notes in Physics, Paul E. Wagner and Gabor Vali, eds., Springer Verlag, New York, NY, 1988, vol. 309, pp. 450–53.

    Google Scholar 

  56. P.E. Wagner and R. Strey:J. Chem. Phys., 1984, vol. 80, pp. 5266–75.

    Article  CAS  Google Scholar 

  57. R.C. Tolman:J. Chem. Phys., 1949, vol. 17, pp. 118–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the “G. Marshall Pound Memorial Symposium on the Kinetics of Phase Transformations” presented as part of the 1990 fall meeting of TMS, October 8–12, 1990, in Detroit, MI, under the auspices of the ASM MSD Phase Transformations Committee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hale, B.N. The scaling of nucleation rates. Metall Mater Trans A 23, 1863–1868 (1992). https://doi.org/10.1007/BF02647536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647536

Keywords

  • Surface Tension
  • Metallurgical Transaction
  • Nonane
  • Nucleation Rate
  • Free Energy Difference