Abstract
The homogeneous nucleation rate,J, forT → T c can be cast into a “corresponding states” form by exploiting scaled expressions for the vapor pressure and for the surface tension, δ. In the vapor-to-liquid case with δ= δ0[T c -T], the classical cluster energy of formation /kT = [16π/3] • Ώ3 [T c -1]3/(lnS)2 = [x0/x]2, where Ώ ≡ δ0/[k ñ2/3] and ñ is liquid number density. [1] The Ώ≈ 2 for normal liquids. (A similar approach can be applied to homogeneous liquid to solid nucleation and to heterogeneous nucleation formalisms using appropriate modifications ofσ and Ώ.[2]) The above [x0/x]2 is sufficiently tenable that in some cases, one can use it to extract approximate critical temperatures from experimental data.[3,4] In this work, we point out that expansion cloud chamber data (for nonane, toluene, and water) are in excellent agreement with lnJ ≈ const. -[x0/x]2 [centimeter-gram-second (cgs) units], and that the constant term is well approximated by ln (Γc), whereT c is the inverse thermal wavelength cubed per second atT =T c . The ln (Γc) is ≈ 60 in cgs units (74 in SI units) for most materials. A physical basis for the latter form, which includes the behavior at smalln, the discrete integer behavior ofn, and a configurational entropy term, τ ln (n), is presented.
This is a preview of subscription content, access via your institution.
References
B.N. Hale:Phys. Rev. A, 1986, vol. 33, pp. 4156–63.
B.N. Hale: inLecture Notes in Physics, Paul E. Wagner and Gabor Vali, eds., Springer Verlag, New York, NY, 1988, vol. 309, pp. 323–49.
M.S. El-Shall:J. Phys. Chem., 1989, vol. 93, pp. 8253–57.
B.N. Hale, P. Kemper, and J.A. Nuth:J. Chem. Phys., 1989, vol. 91, pp. 4314–17.
H.E. Stanley:Introduction to Phase Transitions and Critical Phenomena, Oxford, New York, NY, 1971.
R.C. Reid, J.M. Prausnitz, and BE. Poling:The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, NY, 1986.
B.N. Hale:56th Colloid and Surface Science Symp., Virginia Polytechnic Institute, Blacksburg, VA, 1982.
K. Binder:J. Phys. C, 1980, vol. 4, pp. 51–62.
K. Binder and D. Stauffer:Adv. Phys., 1976, vol. 25, pp. 343–96.
J.S. Langer and L.A. Turski:Phys. Rev. A, 1973, vol. 8, pp. 3230–43; 1980, vol. 22, pp. 2189-95.
J.S. Langer and A.J. Schwartz:Phys. Rev. A, 1980, vol. 21, pp. 948–58.
H. Furukawa and K. Binder:Phys. Rev. A, 1982, vol. 26, pp. 556–66.
K. Binder:Phys. Rev. A, 1982, vol. 25, pp. 1699–1709.
J.D. Gunton: inPhase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., Academic Press, New York, NY, 1983, vol. 8, pp. 267–465.
M.F. Collins and A.M. Collins:Phys. Rev. B, 1987, vol. 35, pp. 394–96 (also references 1 through 6 of this article).
B.J.C. Wu, P.P. Wegener, and G.D. Stein:J. Chem. Phys., 1978, vol. 68, pp. 308–18.
R. McGraw:J. Chem. Phys., 1981, vol. 75, pp. 5514–21.
R.H. Heist and H. Reiss:J. Chem. Phys., 1973, vol. 59, pp. 665–71.
R.H. Heist, K.M. Colling, and C.S. Dupuis:J. Chem. Phys., 1976, vol. 65, pp. 5147–54.
B.J.C. Wu, P.P. Wegener, and G.D. Stein:J. Chem. Phys., 1976, vol. 69, pp. 1776–77.
J.L. Katz and B.J. Ostermier:J. Chem. Phys., 1967, vol. 47, pp. 478–87.
J.L. Katz:J. Chem. Phys., 1970, vol. 52, pp. 4733–48.
J.L. Katz, C.J. Scoppa, N.G. Kumar, and P. Mirabel:J. Chem. Phys., 1975, vol. 62, pp. 448–65.
J.L. Katz, P. Mirabel, C.J. Scoppa, and T.L. Virkler:J. Chem. Phys., 1976, vol. 65, pp. 382–92.
F.H. MacDougall:Physical Chemistry, Macmillan, New York, NY, 1936, p. 96.
D.H. Rasmussen and S.V. Babu:Chem. Phys. Lett., 1984, vol. 108, pp. 449–52.
D.H. Rasmussen, M.R. Appleby, G.L. Leedom, S.V. Babu, and R.J. Naumann:J. Cryst. Growth, 1983, vol. 64, pp. 229–38.
R. Becker and W. Doring:Ann. Phys., 1935, vol. 24, pp. 719–52.
N.H. Fletcher:The Physics of Rainclouds, Cambridge University, Cambridge, United Kingdom, 1969, ch. 3.
F.F. Abraham:Homogeneous Nucleation Theory, Academic Press, New York, NY, 1974.
Y.B. Zeldovitch:Acta Physicochim. (URSS), 1943, vol. 18, pp. 1–11.
C.H. Hung, M.J. Krasnopoler, and J.L. Katz:J. Chem. Phys., 1988, vol. 90, pp. 1856–65; 1990, vol. 91, p. 7722.
J. Lothe and G.M. Pound:J. Chem. Phys., 1962, vol. 36, pp. 2080–85.
H. Reiss, J.L. Katz, and E.R. Cohen:J. Chem. Phys., 1968, vol. 48, pp. 5553–60; H. Reiss, inNucleation Phenomena, A.C. Zettlemoyer, ed., Elsevier, New York, NY, 1977, pp. 1–66.
J.K. Lee, J.A. Barker, and F.F. Abraham:J. Chem. Phys., 1973, vol. 58, pp. 3166–80.
D.J. McGinty:J. Chem. Phys., 1971, vol. 55, pp. 580–88.
J.J. Burton:J. Chem. Phys., 1970, vol. 52, pp. 345–52.
M.R. Hoare and P. Pal:Adv. Phys., 1971, vol. 20, pp. 161–96; 1975, vol. 24, pp. 645-78.
M.R. Hoare:Adv. Chem. Phys., 1979, vol. 40, pp. 49–60.
D.J. McGinty:Chem. Phys. Lett., 1972, vol. 13, pp. 525–28.
N. Garcia and J. Torroja:Phys. Rev. Lett., 1981, vol. 47, pp. 186–90.
R.J. Anderson, R.C. Miller, J.L. Kassner, and D.E. Hagen:J. Atmos. Sci., 1980, vol. 37, pp. 2508–20.
R.C. Miller, R.J. Anderson, J.L. Kassner, and D.E. Hagen:J. Chem. Phys., 1983, vol. 78, pp. 3204–11.
J.L. Schmitt, R.A. Zalabsky, and G.W. Adams:J. Chem. Phys., 1983, vol. 79, pp. 4496–4501.
G.W. Adams, J.L. Schmitt, and R.A. Zalabsky:J. Chem. Phys., 1984, vol. 81, pp. 5074–78.
E.A. Guggenheim:Thermodynamics, 4th ed., North-Holland, Amsterdam, The Netherlands, 1959.
R. LaViolette and R. McGraw: Rockwell International Science Center, Thousand Oaks, CA, private communication, 1990.
B.N. Hale, K.K. Han, and P. Kemper:Bull. Am. Phys. Soc, 1991, vol. 36, p. 646.
W.G. Courtney:J. Chem. Phys., 1961, vol. 35, pp. 2249–50.
J.L. Katz and M. Blander:J. Stat. Phys., 1972, vol. 4, pp. 55–58.
M.E. Fisher:Physics, 1967, vol. 3, pp. 255–83.
C.S. Kiang, D. Stauffer, G.H. Walker, O.P. Puri, J. Wise, Jr., and E.M. Patterson:J. Atmos. Sci., 1971, vol. 28, pp. 1222–32.
A. Dillmann and G.E.A. Meier:Chem. Phys. Lett., 1989, vol. 160, pp. 71–74.
Paul Kemper: Ph.D. Thesis, University of Missouri-Rolla, Rolla, MO, 1990.
P. Kemper and B.N. Hale: inLecture Notes in Physics, Paul E. Wagner and Gabor Vali, eds., Springer Verlag, New York, NY, 1988, vol. 309, pp. 450–53.
P.E. Wagner and R. Strey:J. Chem. Phys., 1984, vol. 80, pp. 5266–75.
R.C. Tolman:J. Chem. Phys., 1949, vol. 17, pp. 118–27.
Author information
Authors and Affiliations
Additional information
This paper is based on a presentation made in the “G. Marshall Pound Memorial Symposium on the Kinetics of Phase Transformations” presented as part of the 1990 fall meeting of TMS, October 8–12, 1990, in Detroit, MI, under the auspices of the ASM MSD Phase Transformations Committee.
Rights and permissions
About this article
Cite this article
Hale, B.N. The scaling of nucleation rates. Metall Mater Trans A 23, 1863–1868 (1992). https://doi.org/10.1007/BF02647536
Issue Date:
DOI: https://doi.org/10.1007/BF02647536
Keywords
- Surface Tension
- Metallurgical Transaction
- Nonane
- Nucleation Rate
- Free Energy Difference