Skip to main content
Log in

A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The fracture behavior of two heats of AF1410 steel has been investigated for two aging temperatures, 425°C and 510°C. The first heat, modified by deliberate lanthanum additions, contains lanthanum-rich inclusions characterized by an inclusion spacing of 7.6 μm. The second heat, not modified by lanthanum additions, contains a comparable volume fraction of much smaller CrS inclusions characterized by an inclusion spacing of 2.3 μm. Of the mechanical properties measured, only the toughness appears to be influenced by inclusion type. For example, on aging at 510°C, δ IC , the critical value of the crack tip opening displacement, for the lanthanum modified heat is 66 μm compared to 28 μm for the heat containing CrS inclusions. This influence of inclusion type is attributed to the larger spacing of the inclusions in the lanthanum modified heat. In addition, for both heats the toughness on aging at 510°C was higher than after aging at 425°C. Particle analysis from extraction replicas of polished cross-sections of as-quenched materials and of fracture surfaces of the 425°C and 510°C microstructures indicates that on aging at 510°C only undissolved particles inherited from the austenitizing temperature nucleate secondary voids, but that on aging at 425°C carbides precipitated on aging nucleate secondary voids as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rice, and M. A. Johnson: inInelastic Behavior of Solids, M. F. Kanninen, W. G. Adler, A. R. Rosenfield, and R. J. Jaffee, eds., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  2. A. J. Birkle, R. P. Wei, and G. E. Pellissier,Trans. of ASM, 1966, vol. 59, pp. 981–90.

    CAS  Google Scholar 

  3. W. M. Garrison, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 669–78.

    CAS  Google Scholar 

  4. G. R. Speich, D. S. Dabkowski, and L. F. Porter:Metall. Trans., 1973, vol. 4, pp. 303–15.

    Article  CAS  Google Scholar 

  5. G. D. Little, and P. M. Machmeier: AFML-TR-75-148, Final Report Mar. 1973-Feb. 1975, Air Force, Materials Lab., Wright-Patterson Air Force Base, Dayton, OH, 1975.

    Google Scholar 

  6. H. L. Black, J. L. Milavec, and R. R. Shiring: Technical Report AFML-TR-79-4181, Air Force Materials Laboratory, Wright-Patterson, OH, 1979.

    Google Scholar 

  7. W. M. Garrison, Jr., and N. R. Moody:Metall. Trans. A, 1987, vol. 18A, pp. 1257–63.

    CAS  Google Scholar 

  8. D. A. Kay, W.-K. Lu, and A. McLean:Sulfides in Steel, ASM, Metal Park, OH, 1975, pp. 23–43.

    Google Scholar 

  9. M. P. Seah, P. J. Spencer, and E. D. Hondros:Metal Science, 1979, vol. 13, pp. 307–14.

    Article  CAS  Google Scholar 

  10. W. M. Garrison, Jr.:Proceedings of the Earl R. Parker Symposium on Structure Property Relationships, S. D. Antolovich, R. O. Ritchie, and W. W. Gerberich, eds., TMS-AIME, 1985, p. 187.

  11. K. J. Handerhan, and W. M. Garrison, Jr.:Scripta Metall., 1988, vol. 22, pp. 409–12.

    Article  CAS  Google Scholar 

  12. AMS 6427, “Aerospace Materials Specification,” issued 7-15-80, SAE, Inc., Warrendale, PA.

  13. ASTM E8-81,1983 Annual Book of ASTM Standards, ASTM, Phila., PA. 1983, p. 197.

  14. ASTM E646-78,1983 Annual Book of ASTM Standards, ASTM, Phila., PA, 1983, p. 755.

  15. D. A. Corrigan, R. E. Travis, V. P. Ardito, and C. M. Adams, Jr.:Welding Research Supplement, March 1962, pp. 123s–128s.

  16. D. P. Clausing:Int. J. of Fract. Mech., 1970, vol. 6, pp. 71–85.

    Google Scholar 

  17. D. P. Clausing: U. S. Steel Report No. 35.066-001 (2), Aug. 1, 1972.

  18. J. M. Barsom, and J. V. Pellegrino:Eng. Fract. Mech., 1973, vol. 5, pp. 209–21.

    Article  CAS  Google Scholar 

  19. L. Anand, and W. A. Spitzig:J. Mech. Phys. Solids, 1980, vol. 28, pp. 113–28.

    Article  Google Scholar 

  20. V. Tvergaard, A. Needleman, and K. K. Lo:J. Mech. Phys. Solids, 1981, vol. 29, pp. 115–42.

    Article  Google Scholar 

  21. ASTM E23-72,1983 Annual Book of ASTM Standards, ASTM, Phila., PA, 1983, p. 115.

  22. ASTM E813-81,1983 Annual Book of ASTM Standards, ASTM, Phila., PA, 1983, pp. 762–80.

  23. G. A. Clarke, W. R. Andrews, P. C. Paris, and D. W. Schmidt: ASTM STP 590, ASTM, 1976, pp. 27–42.

  24. A. Saxena, and S. J. Hudak:Int. J. of Fract., 1978, vol. 14, pp. 453–68.

    Article  Google Scholar 

  25. J. G. Merkle and H. T. Corten: Trans. ASME, Vol. 96, Series J,J. of Pressure Vessel Technology, 1974, pp. 286–92.

  26. Metals Handbook, vol. 8,Metallography, Structures and Phase Diagrams, ASM, Metals Park, OH, 1973.

  27. ASTM E112-81,1983 Annual Book of ASTM Standards, ASTM, Phila., PA, 1983, p. 62.

  28. B. L. Averbach, and M. Cohen:Trans. AIME, 1948, vol. 176, pp. 401–14.

    Google Scholar 

  29. R. L. Miller:Trans. AIME, 1964, vol. 57, pp. 892–99.

    CAS  Google Scholar 

  30. W. E. Stumpf, and C. M. Sellars:Metallography, 1968, vol. 1, pp. 25–34.

    Article  CAS  Google Scholar 

  31. M. F. Ashby, and R. Ebeling:Trans. AIME, 1966, vol. 236, pp. 1396–1404.

    CAS  Google Scholar 

  32. Aerospace Structural Metals Handbook, 1980 ed., D. J. Maykuth, ed., Battelle Columbus Laboratoires, Columbus, OH.

    Google Scholar 

  33. G. R. Speich, and W. A. Spitzig:Metall. Trans. A, 1982, vol. 13A, pp. 2239–58.

    Google Scholar 

  34. R. H. Wagoner:Metall. Trans. A, 1980, vol. 11A, pp. 165–75.

    CAS  Google Scholar 

  35. P. H. Salmon-Cox, B. G. Reisdorf, and G. E. Pellisier:Trans. AIME 1967, vol. 239, pp. 1809–17.

    Google Scholar 

  36. J. E. Hilliard:Stereology: Principles and Practices, Northwestern University, 1981.

  37. I. S. Brammar:J. I. S. I., 1963, vol. 201, pp. 752–62.

    CAS  Google Scholar 

  38. G. R. Yoder:Metall. Trans., 1972, vol. 3, pp. 1851–59.

    Article  CAS  Google Scholar 

  39. C. J. Middleton:Metal Science, 1981, vol. 15, pp. 154–67.

    Article  CAS  Google Scholar 

  40. J. R. Rice, and D. M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  41. R. M. McMeeking:J. of Eng. Mat. and Tech., Oct. 1977, pp. 290–97.

  42. R. M. McMeeking:J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

  43. K. J. Handerhan, and W. M. Garrison, Jr.:Scripta Metall., 1988, vol. 22, pp. 607–10.

    Article  CAS  Google Scholar 

  44. K. J. Handerhan: Ph. D. Thesis, Carnegie Mellon University, Sept. 1987.

  45. W. M. Garrison, Jr.:Scripta Metall., 1984, vol. 18, pp. 583–86.

    Article  CAS  Google Scholar 

  46. K. J. Handerhan, and W. M. Garrison, Jr.:Metall. Trans. A, 1988, vol. 19A, pp. 2989–3004.

    CAS  Google Scholar 

  47. W. M. Garrison, Jr.:Scripta Metalls., 1986, vol. 20, pp. 633–36.

    Article  CAS  Google Scholar 

  48. C. F. Shih:J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–30.

    Article  Google Scholar 

  49. B. de Miramon: M. S. Thesis, University of California, Berkeley, CA, 1967 (Lawrence Berkeley Laboratory Report-UCRL-17849).

  50. J. Maloney: unpublished research, Carnegie Mellon University, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handerhan, K.J., Garrison, W.M. & Moody, N.R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410. Metall Trans A 20, 105–123 (1989). https://doi.org/10.1007/BF02647498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647498

Keywords

Navigation