Skip to main content
Log in

Structure and properties of a β solution treated, quenched, and aged si-bearing near-α titanium alloy

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The microstructure, tensile properties, and fractographic features of a near-α titanium alloy, IMI 829(Ti-6.1 wt pct Al-3.2 wt pct Zr-3.3 wt pct Sn-1 wt pct Nb-05 wt pct Mo-0.32 wt pct Si) have been studied after aging over a temperature range of 550°C to 950°C for 24 hours following solution treatment in the β phase field at 1050°C and water quenching. Transmission electron microscopy studies revealed that aging at 625°C and above produced discrete silicides at α′ interplatelet boundaries. However, aging at 900°C and above has also resulted in the precipitation of β phase along the lath boundaries of martensite. The silicides have been found to have a hexagonal structure withc=0.36 nm anda=0.70 nm (designated as S2 by earlier workers). There is a significant improvement in yield and ultimate tensile strength after aging at 625°C, but there is less improvement at higher aging temperatures. The tensile ductility is found to be drastically reduced. While the fracture surface of the unaged specimen shows elongated dimples, the aged samples show a mixed mode of fracture, consisting of facets, featureless parallel bands, and extremely fine dimples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Fentiman, R. E. Goosey, R. T. J. Hubbard and M. D. Smith:The Science, Technology and Application of Titanium, Pergamon Press, New York, NY, 1970, p. 987.

    Google Scholar 

  2. S. R. Seagle and H. B. Bomberger:The Science, Technology and pplication of Titanium, R.I. Jaffee and N. E. Promisel, eds., Pergamon Press, New York, NY, 1970, p. 1001.

    Google Scholar 

  3. H. M. Flower, P. R. Swann, and D. R. F. West:Titanium Science and Technology, R.I. Jaffee and H. M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 2, pp. 1143–54.

    Google Scholar 

  4. M. Kehoe and R. W. Broomfield,Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 4, p. 2167.

    Google Scholar 

  5. M. R. Winstone, R. D. Rawlings, and D. R. F. West:J. of Less-Common Metals, 1975, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  6. Y. Imbert:J. of Less-Common Metals, 1974, vol. 47, pp. 71–89.

    Article  Google Scholar 

  7. N. E. Paton and M. W. Mahoney:Metall. Trans. A, 1976, vol. 7A, p. 1685.

    CAS  Google Scholar 

  8. A. T. K. Assadi, H. M. Flower, and D. R. F. West:Metals Technology, Jan. 1979, pp. 16–23.

  9. M. W. Mahoney and N. E. Paton:Metall. Trans. A, 1978, vol. 9A, pp. 1497–1501.

    CAS  Google Scholar 

  10. K. C. Antony:Trans. TMS-AIME, 1968, vol. 242, p. 1454.

    CAS  Google Scholar 

  11. P. S. Kotval and R. W. Calder:Metall. Trans., 1972, vol. 3, p. 1308.

    Article  CAS  Google Scholar 

  12. H. M. Flower, P. R. Swann, and D. R. F. West:Metall. Trans., 1971, vol. 2, pp. 3289–97.

    CAS  Google Scholar 

  13. F. Barbier, C. Servant, C. Quesne, and M. P. Lacombe:J. Microsc. Spectrosc. Electron, 1981, vol. 6, p. 209.

    Google Scholar 

  14. C. Ramachandra and Vakil Singh:Metall. Trans. A, 1982, vol. 13A, pp. 771–75.

    Google Scholar 

  15. D. F. Neal and P. A. Blenkinsop:Titanium Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, vol. 2, pp. 1287–94.

    Google Scholar 

  16. G. Srihdar, V. V. Kutumbarao, and D. S. Sarma:Metall. Trans. A, 1987, vol. 18A, pp. 877–91.

    Google Scholar 

  17. G. Sridhar and D. S. Sarma:Metall. Trans., A, in press.

  18. M. J. Blackburn and J. C. Williams:Trans. AIME, 1967, vol. 239, pp. 287–88.

    CAS  Google Scholar 

  19. D. Banerjee, J. E. Allison, F. H. Froes, and J. C. Williams:Titanium Science and Technology, G. Lütjering, U. Zwicker and W. Bunk, eds., Deutsche Gesell, Metallkunde, 1985, vol. 3, pp. 1519–26.

    Google Scholar 

  20. A. P. Woodfield, M. H. Loretto, and R. E. Smallman:Titanium Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesell, Metallkunde, 1985, vol. 3, pp. 1527–34.

    Google Scholar 

  21. C. Ramachandra and Vakil Singh:Metall. Trans. A, 1985, vol. 16A, pp. 453–55.

    CAS  Google Scholar 

  22. F. Barbier, C. Servant, C. Quesne, and P. Lacombe:J. Microsc. Spectrosc. Electron, 1981, vol. 6, pp. 299–310.

    CAS  Google Scholar 

  23. D. Banerjee, D. Mukherjee, R. L. Saha, and K. Bose:Metall. Trans. A, 1983, vol. 14A, pp. 413–20.

    Google Scholar 

  24. C. Ramachandra and Vakil Singh:Metall. Trans. A, 1985, vol. 16A, pp. 227–31.

    CAS  Google Scholar 

  25. C. Ramachandra: Ph.D. Thesis, Banaras Hindu University, Varanasi, India, 1985.

  26. D. Eylon, J. A. Hall, C. M. Pierce, and D. L. Ruckle:Metall. Trans. A, 1976, vol. 7A pp. 1817–26.

    CAS  Google Scholar 

  27. D. Eylon and J. A. Hall:Metall. Trans. A, 1977, vol. 8A, p. 981.

    CAS  Google Scholar 

  28. J. C. Chesnutt, C. G. Rhodes, and J. C. Williams.Fractography Microscopic Cracking Processes, ASTM STP 600, ASTM Publication, Philadelphia, PA, 1976, pp. 99–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, G., Sarma, D.S. Structure and properties of a β solution treated, quenched, and aged si-bearing near-α titanium alloy. Metall Trans A 20, 55–62 (1989). https://doi.org/10.1007/BF02647493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647493

Keywords

Navigation