Skip to main content
Log in

The acoustoelastic response of a textured material during elastic-plastic deformation

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Acoustoelasticity is a technique for the nondestructive evaluation of stress which relates changes in the speeds at which plane waves propagate through a solid to variations in the stress state. In the present work, the acoustoelastic behavior of a polycrystalline aggregate during elasticplastic deformation is investigated. Results are reported for a series of uniaxial tests in which the velocities of longitudinal and shear waves were monitored during elastic-plastic deformation of aluminum 5086-H32. A specific microstructural mechanism—the reorientation of grains due to plastic deformation—is investigated as a cause for the observed changes in acoustoelastic response which occur during elastic-plastic deformation. The Taylor theory analysis of the grain reorientation predicts velocity changes that are of the same sign and order of magnitude as the experimental results for shear waves but not for longitudinal waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.N. Hsu:Exp. Mech., 1974, vol. 14, pp. 169–76.

    Article  Google Scholar 

  2. G.S. Kino, J.B. Hunter, G.C. Johnson, A.R. Selfridge, D.M. Barnett, G. Herrmann, and C.R. Steele:J. Appl. Phys., 1979, vol. 50, pp. 2607–13.

    Article  Google Scholar 

  3. G.C. Johnson:J. Appl. Mech., 1981, vol. 48, pp. 791–95.

    CAS  Google Scholar 

  4. H. Toda, H. Fukuoka, and H. Ohmori:J. Soc. Mater. Sci. Jpn., 1982, vol. 31, p. 238.

    CAS  Google Scholar 

  5. M. Hirao and Y.H. Pao:J. Acoust. Soc. Am., 1985, vol. 77, p. 1659.

    Article  Google Scholar 

  6. T.E. Wong and G.C. Johnson: inReview of Progress in Quantitative NDE, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1986, vol. 5, pp. 1397–1405.

    Google Scholar 

  7. S.G. Allison, J.S. Heyman, and K. Salama: inReview af Progress in Quantitative NDE, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1986, vol. 5, pp. 1565–72.

    Google Scholar 

  8. G.C. Johnson:J. Acoust. Soc. Am., 1981, vol. 70, pp. 591–95.

    Article  Google Scholar 

  9. M. Kobayashi:Trans. JSME, 1982, vol. A48, p. 432.

    Google Scholar 

  10. G.C. Johnson:J. Appl. Mech., 1983, vol. 50, pp. 689–91.

    Google Scholar 

  11. G.I. Taylor:J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  12. J. Gil Sevillano, P. Van Houtte, and E. Aernoudt:Prog. Mater. Sci., 1980, vol. 25, pp. 69–412.

    Article  Google Scholar 

  13. G.Y. Chin, W.L. Mammel, and M.T. Dolan:Trans. TMS-AIME, 1969, vol. 245, pp. 383–88.

    CAS  Google Scholar 

  14. H.J. Bunge:Krist. Tech., 1970, vol. 5, pp. 145–75.

    CAS  Google Scholar 

  15. J.S. Kallend and G.J. Davies:Phil. Mag., 1972, vol. 25, pp. 471–90.

    CAS  Google Scholar 

  16. P. Van Houtte and E. Aernoudt:Z. Metallkd., 1975, vol. 66, pp. 202–09 and 303-06.

    Google Scholar 

  17. P. Van Houtte and F. Wagner: inPreferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, H.R. Wenk, ed., Academic Press, New York, NY, 1985, pp. 233–58.

    Google Scholar 

  18. E. Aernoudt: inProc. 5th Int. Conf. on Textures of Materials (ICOTOM-5), G. Gottstein and K. Lucke, eds., Springer, Berlin, 1978, pp. 45–65.

  19. G.C. Johnson:J. Appl. Mech., 1985, vol. 52, pp. 659–63.

    Article  Google Scholar 

  20. 1983 Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1983, vol. 3.01.

  21. D.B. Ilić, G.S. Kino, and A.R. Selfridge:Rev. Sci. Instrum., 1979, vol. 50, pp. 1527–31.

    Article  Google Scholar 

  22. J.J. Dike and G.C. Johnson:J. Appl. Mech., 1990, vol. 57, pp. 12–17.

    Google Scholar 

  23. H.J. Bunge:Texture Analysis in Materials Science, Butterworth’s, London, 1982.

    Google Scholar 

  24. H.R. Wenk: inPreferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, H.R. Wenk, ed., Academic Press, New York, NY, 1985, pp. 11–47.

    Google Scholar 

  25. J. Pospiech and J. Jura:Z. Metallkd., 1974, vol. 65, pp. 324–30.

    CAS  Google Scholar 

  26. H.R. Wenk and U.F. Kocks:Metall. Trans. A, 1987, vol. 18A, pp. 1083–92.

    CAS  Google Scholar 

  27. G. Sachs:Z. Ver. Dtsch. Ing., 1928, vol. 72, pp. 734–36.

    Google Scholar 

  28. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  29. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol.42, pp. 1298–1307.

    CAS  Google Scholar 

  30. E. Schmid: inProc. Int. Cong. Appl. Mech. (Delft), 1924, p. 342.

  31. J.F. Bussier, C.K. Jen, I. Makarow, B. Bacroix, Ph. Lequeu, and J.J. Jonas: inNondestructive Characterization of Materials II, J.F. Bussier, J.P. Monchalin, C O. Ruud, and R.E. Green, eds., Plenum Press, New York, NY, 1987, pp. 523–33.

    Google Scholar 

  32. A. Hikata, R. Truell, A. Granato, B. Chick, and K. Lucke:J. Appl. Phys., 1956, vol. 27, pp. 396–404.

    Article  Google Scholar 

  33. A. Hikata, B. Chick, C. Elbaum, and R. Truell:acta Metall., 1962, vol. 10, pp. 423–29.

    Article  CAS  Google Scholar 

  34. G.A. Alers: inPhysical Acoustics, W.P. Mason, ed., Academic Press, New York, NY, 1966, vol. 4a, pp. 277–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, T.E., Johnson, G.C. The acoustoelastic response of a textured material during elastic-plastic deformation. Metall Trans A 21, 3011–3019 (1990). https://doi.org/10.1007/BF02647221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647221

Keywords

Navigation