Skip to main content
Log in

Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A model of slow crack propagation based on the delayed hydride cracking (DHC) mechanism in hydride-forming alloys has been critically examined and evaluated to take account of recent experimental and theoretical advances in the understanding of hydride fracture and terminal solid solubility (TSS). The model predicts that the DHC velocity is a sensitive function of the hydrogen concentration induced in the bulk of the material as a result of the direction of approach to test temperature. For test temperatures approached from below, factors such as the hydridematrix accommodation energies, the stress state at the crack tip, and the value of the yield stress have a strong effect on the DHC arrest temperature in the technologically interesting temperature range of 400 to 600 K. A fracture criterion is explored based on the need to achieve a critical hydride length in the plastic zone at the crack tip. A necessary condition for DHC is that the crack tip hydride must grow to this critical length. An approximate estimate is made for the steady-state growth limit of the crack tip hydride as a function of the direction of approach to temperature and the crack tip stress state. For temperatures approached from below, growth of the crack tip hydride is limited to just outside the plastic zone boundary at low temperature, gradually receding toward and inside the plastic zone boundary with increasing temperature. At lowK I values, this limits the crack tip hydride lengths to below their critical values for fracture. This could be one condition forK IH . For test temperatures approaches from above, the growth limit is significantly increased, and the sensitivities to the above parameters become less evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dutton and M.P. Puls: inEffect of Hydrogen on Behaviour of Materials, A.W. Thompson and I.M. Bernstein, eds., TMS-AIME, New York, NY, 1976, pp. 512–25.

    Google Scholar 

  2. R. Dutton, K. Nuttall, M.P. Puls, and L.A. Simpson:Metall. Trans. A, 1977, vol. 8A, pp. 1553–62.

    CAS  Google Scholar 

  3. R. Dutton, C.H. Woo, K. Nuttall, L.A. Simpson, and M.P. Puls:Hydrogen in Metals, 2nd Int. Congr. on Hydrogen in Metals. Pergamon Press, Oxford, United Kingdom, 1978 Paper 3C6.

    Google Scholar 

  4. L.A. Simpson and M.P. Puls:Metall. Trans. A, 1979, vol. 10A, pp. 1093–1105.

    CAS  Google Scholar 

  5. J.F.R. Ambler:Zirconium in the Nuclear Industry: 6th Int. Symp., ASTM STP 824, D.G. Franklin and R.B. actamson, eds., ASTM, Philadelphia, PA, 1984, pp. 653–74.

    Google Scholar 

  6. M.P. Puls:Metall. Trans. A, 1988, vol. 19A, pp. 2247–57.

    CAS  Google Scholar 

  7. K.F. Amouzouvi and L.J. Clegg:Metall. Trans. A, 1987, vol. 18A, pp. 1687–94.

    CAS  Google Scholar 

  8. K.F. Amouzouvi and L.J. Clegg: inProc. Int. Symp. on Fracture Mechanics, W.R. Tyson and B. Mukherjee, eds., Pergamon Press Ltd., Toronto, ON, Canada, pp. 107–18.

  9. M.P. Puls:J. Nucl. Mater., 1989, vol. 165, pp. 128–41.

    Article  CAS  Google Scholar 

  10. M.P. Puls:Acta Metall., 1981, vol. 29, pp. 1961–81.

    Article  CAS  Google Scholar 

  11. M.P. Puls:Acta Metall., 1984, vol. 32, pp. 1259–69.

    Article  CAS  Google Scholar 

  12. S.R. MacEwen, C.E. Coleman, C.E. Ells, and J. Faber, Jr.:acta Metall. 1985, vol. 33, pp. 753–757.

    Article  CAS  Google Scholar 

  13. J.D. Eshelby:Proc. R. Soc. London A, 1957, vol. 241, pp. 376–96.

    Article  Google Scholar 

  14. J.D. Eshelby: inSolid State Physics, F. Scitz and D. Turnbull, eds., Academic Press, New York, NY, 1966, vol. 3, pp. 89–140.

    Google Scholar 

  15. J.K. Lee, Y.Y. Earmme, H.I. Aaronson, and K.C. Russell:Metall. Trans. A, 1980, vol. 11A, pp. 1837–47.

    Google Scholar 

  16. L.A. Simpson: inMechanical Behaviour of Materials, K.J. Miller and R.E. Smith, eds., Pergamon Press, Oxford, United Kingdom, 1979, vol. 2, ICM3, pp. 445–55.

    Google Scholar 

  17. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  18. J.R. Rice and G.F. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  19. C F. Shih: Brown University Report No. MRL E-147, Provi-dence, RI, 1983.

  20. J.R. Rice and M.A. Johnson: inInelastic Behaviour of Solids, M.F. Kanninen, W.G. Adler, A.R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill Book Co., New York, NY, 1970, pp. 651–72.

    Google Scholar 

  21. B.W. Leitch: AECL Research, Whiteshell Laboratories, Pinawa, MB, Canada, unpublished research, 1989.

  22. J.F. Knott:Fundamentals of Fracture Mechanics, Butterworth’s, London, 1973.

    Google Scholar 

  23. J.F.R. Ambler: AECL Research, Chalk River Laboratories, Chalk River, ON, Canada, unpublished research, 1986.

  24. V. Perovic, G.C. Weatherly, and C.J. Simpson:Scripta Metall., 1982, vol. 15, pp. 409–12.

    Google Scholar 

  25. V. Perovic, G.C. Weatherly, and C.J. Simpson:acta Metall., 1983, vol. 31, pp. 1381–91.

    Article  CAS  Google Scholar 

  26. M.S. Rashid and T.E. Scott:J. Less-Common Met., 1973, vol. 31, pp. 377–88.

    Article  CAS  Google Scholar 

  27. D.S. Shih, I.M. Robertson, and H.K. Birnbaum:acta Metall., 1988, vol. 36, pp. 111–24.

    Article  CAS  Google Scholar 

  28. V. Perovic, G.R. Purdy, and L.M. Brown:acta Metall., 1981, vol. 29, pp. 889–902.

    Article  CAS  Google Scholar 

  29. M.P. Puls:Metall. Trans. A, 1988, vol. 19A, pp. 1507–22.

    CAS  Google Scholar 

  30. M.P. Puls: AECL Research Whiteshell Laboratories, Pinawa, MB, Canada, unpublished research, 1988.

  31. C.E. Coleman and J.F.R. Ambler:Scripta Metall., 1983, vol. 17, pp. 77–82.

    Article  CAS  Google Scholar 

  32. A. Sawatzky:J. Nucl. Mater., 1960, vol. 2, pp. 62–68.

    Article  Google Scholar 

  33. G.J.C. Carpenter:J. Nucl. Mater., 1973, vol. 48, pp. 264–66.

    Article  CAS  Google Scholar 

  34. J.J. Kearns:J. Nucl. Mater., 1967, vol. 22, pp. 292–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puls, M.P. Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking. Metall Trans A 21, 2905–2917 (1990). https://doi.org/10.1007/BF02647211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647211

Keywords

Navigation