Skip to main content
Log in

Combined influence of geometric defects and thermal gradients on tensile ductility

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Finite element modeling of sheet tensile specimens has been performed in order to analyze the combined effect of initial geometric defects and thermal gradients on tensile stress-strain behavior. Isothermal tensile ductilities were predicted to decrease dramatically from 0.555 for a specimen with no taper to 0.116 for a specimen with 50 pct taper. The corresponding reductions in tensile ductility for assumed adiabatic conditions were found to be from 0.46 to 0.099. These results demonstrate that thermal gradients are most detrimental for initially uniform tensile specimens and have a smaller effect on tensile ductility for specimens with large initial geometric defects. As a proportion of total ductility, however, thermal gradients decrease ductility by a nearly constant value of 15.5 pct, independent of the size of the initial taper. Comparison of 2-D FEM results with a complete multi-element 1-D analysis indicates that the developed biaxial stress state in the neck accounts for increased total elongations. The increase in total ductility caused by the biaxial stress state in the neck increases with increasing size of initial geometric defect. These results question the value of 1-D analysis of sheet tensile test behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. ConsidèreAnn. des Ponts et Chaussees, 1885, vol. 9, ser 6 p. 574.

    Google Scholar 

  2. E.W. Hart:Acta Metall., 1967, vol. 115, p. 351.

    Article  Google Scholar 

  3. A.K. Ghosh:Acta Metall., 1977, vol. 25, p. 1413.

    Article  Google Scholar 

  4. J.J. Jonas, R.A. Holt, and C. E. Coleman:Acta Metall., 1976, vol. 24, p. 911.

    Article  Google Scholar 

  5. J.J. Jonas and N. Christodoulou:Scripta Metall., 1978, vol. 12, p. 393.

    Article  Google Scholar 

  6. J.J. Jonas, N. Christadoulou, and C. G’Sell:Scripta Metall., 1978, vol. 12, p. 565.

    Article  Google Scholar 

  7. E. Duncombe:Int. J. Mech. Sci., 1972, vol. 14, p. 325.

    Article  Google Scholar 

  8. A.K. Ghosh and R.A. Ayres:Metall. Trans. A, 1976, vol. 7A, p. 1589.

    Article  Google Scholar 

  9. J.W. Hutchinson and K. W. Neale:Acta Metall., 1977, vol. 25, p. 839.

    Article  Google Scholar 

  10. F. A. Nichols:Acta Metall., 1980, vol. 28, p. 663.

    Article  Google Scholar 

  11. H. Swift:J. Mech. Phys. Solids, 1952, vol. 1, p. 1.

    Article  Google Scholar 

  12. R. Hill:J. Mech. Phys. Solids, 1952, vol. 1, p. 19.

    Article  Google Scholar 

  13. A.K. Ghosh:Metall. Trans., 1974, vol. 5, p. 1607.

    Article  Google Scholar 

  14. S. L. Semiatin, A. K. Ghosh, and J. J. Jonas:Metall. Trans. A, 1985, vol. 16A, p. 2291.

    Article  Google Scholar 

  15. A.K. Sachdev and J.E. Hunter, Jr.:Metall. Trans..A, 1982, vol. 13A, p. 1063.

    Article  Google Scholar 

  16. Y. Gao and R.H. Wagoner:Metall. Trans. A, 1987, vol. 18A, p. 1001.

    Article  Google Scholar 

  17. A. S. Korhonen and H. J. Kleemola:Metall. Trans. A, 1978, vol. 9A, p. 979.

    Article  Google Scholar 

  18. G. Ferron:Mat. Sci. Eng., 1981, vol. 49, p. 241.

    Article  Google Scholar 

  19. M. Wada and T. Nakamura:Phil. Mag. A, 1978, vol. 38, ser. 2, p. 167.

    Article  Google Scholar 

  20. C. Fressengeas and A. Molinari:Acta Metall., 1985, vol. 33, ser. 3, p. 387.

    Article  Google Scholar 

  21. R.A. Ayres:Metall. Trans. A, 1985, vol. 16A, p. 37.

    Article  Google Scholar 

  22. S. L. Semiatin, A. K. Ghosh, and J. J. Jonas:Metall. Trans. A, 1985, vol. 16A, p. 2291.

    Article  Google Scholar 

  23. K.S. Raghavan and R.H. Wagoner:Int. J. Plast., 1987, vol. 3, p. 33.

    Article  Google Scholar 

  24. M.R. Lin and R.H. Wagoner:Metall. Trans. A, 1987, vol. 18A, p. 1035.

    Article  Google Scholar 

  25. Y.H. Kim and R.H. Wagoner:Int. J. Plast., 1987, vol. 29, p. 179.

    Google Scholar 

  26. J. F. Bishop:Quart. J. Mech. & Appl. Math., 1956, vol. 9, p. 236.

    Article  Google Scholar 

  27. M. R. Lin and R. H. Wagoner:Scripta Metall., 1986, vol. 20, p. 143.

    Article  Google Scholar 

  28. R. Hill:Math. Proc. Camb. Phil. Soc, 1979, vol. 85, p. 179.

    Article  Google Scholar 

  29. R. H. Wagoner:Metall. Trans. A, 1981, vol. 12A, p. 877.

    Article  Google Scholar 

  30. N.M. Wang:Numerical Analysis of Forming Processes, J.F. T. Pittman, O.C. Zienckowicz, and J.M. Alexander, eds., John Wiley and Sons, New York, NY, 1982, p. 117.

    Google Scholar 

  31. K. Chung and R.H. Wagoner:Int. J. Mech. Sci., 1986, vol. 29, p. 450.

    Google Scholar 

  32. W. S. Farren and G.I. Taylor:Proc. Roy. Soc. A, 1925, vol. 107, p. 422.

    Article  Google Scholar 

  33. K. Chung and R. H. Wagoner: unpublished research, 1986.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student at The Ohio State University, Columbus, OH

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, K.S., Wagoner, R.H. Combined influence of geometric defects and thermal gradients on tensile ductility. Metall Trans A 18, 2143–2150 (1987). https://doi.org/10.1007/BF02647086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647086

Keywords

Navigation