Skip to main content
Log in

Recrystallization and grain growth in titanium: I. characterization of the structure

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 1972

Abstract

Transmission electron microscopy, quantitative optical microscopy, and texture studies were made on swaged and recrystallized titanium wire of three impurity contents: zone refined, a special lot of intermediate purity, and commercial A-70. The electron microscopy studies revealed that a) during recrystallization a number of processes overlap, and b) during grain growth there occurs a decrease in the dislocation density within the grains along with the increase in the average grain size. The quantitative microscopy studies indicated that the linear intercept grain size distribution is approximately log normal and that for a given mean grain size the distribution is relatively independent of the combination of annealing time and temperature used to obtain it. Moreover, there exists a range of grain sizes in space, the numbers of grains in each class interval changing with increase in grain size. The so-called grain shape factor decreases with increase in mean grain size (annealing time) at a constant temperature and with decrease in temperature for a constant grain size. The texture of the as-swaged wire and the changes in the texture during grain growth are in qualitative accord with those previously reported for deformed and recrystallized titanium. Impurity content influences the degree of these various structural characteristics but not their substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lücke and H. StUwe:Recovery and Recrystallization of Metals, p. 171, Gordon and Breach, N. Y., 1963.

    Google Scholar 

  2. P. Gordon and R. A. Vandermeer:Recrystallization, Grain Growth and Tex- tures, p. 205, ASM, Cleveland, 1966.

    Google Scholar 

  3. R. J. Wasilewski and G. L. Kehl:J. Inst. Metals, 1954-55, vol. 83, p. 94.

    CAS  Google Scholar 

  4. J. Pratt, W. Bratina, and B. Chalmers:Acta Met., 1954, vol. 2, p. 203.

    Article  CAS  Google Scholar 

  5. F. Wagner, E. Bucur, and M. Steinbery:Trans. ASM, 1956, vol. 48, p. 742.

    Google Scholar 

  6. C. E. Shamblen and T. K. Redden:The Science, Technology and Application of Titanium, p. 199, Pergamon, N. Y., 1970.

    Google Scholar 

  7. J. E. Burke and D. Turnbull, Prog. Met. Phys., 1952, vol. 3, p. 220.

    Article  CAS  Google Scholar 

  8. H. Conrad:Acta Met., 1966, vol. 14, p. 1631.

    Article  CAS  Google Scholar 

  9. F. Schuckher:Quantitative Microscopy, p. 201, McGraw Hill, 1968.

  10. C. S. Smith and L. Guttman:AIME Trans., 1953, vol. 197, p. 81.

    Google Scholar 

  11. L. Rice, C. P. Hinesley and H. Conrad:Metallog., 1971, vol. 4, p. 257.

    Article  CAS  Google Scholar 

  12. R. L. Jones and H. Conrad:Trans. TMS-AIME, 1969, vol. 245, p. 779.

    CAS  Google Scholar 

  13. I. Obinata and K. Nishimura:J. Inst. Metals, 1955-56, vol. 84, p. 97.

    Google Scholar 

  14. A. D. McQuillan and M. K. McQuillan:Titantium, Academic Press, N. Y., 1956

    Google Scholar 

  15. R. I. Jaffee:Progr. Metal Phys., 1958, vol. 7, p. 65.

    Article  CAS  Google Scholar 

  16. Hsun Hu and R. S. Cline:Trans. TMS-AIME, 1968, vol. 242, p. 1013.

    CAS  Google Scholar 

  17. S. Weissmann, T. Imura, and N. Hosokawa:Recovery and Recrystallization of Metals, p. 241, Gordon and Breach, N. Y., 1963.

    Google Scholar 

  18. D. W. Moon:Mater. Sci. Eng, 1971, vol. 7, p. 103.

    Article  CAS  Google Scholar 

  19. P. A. Beck:J. Appl. Phys., 1949, vol 19, p. 507.

    Article  Google Scholar 

  20. P. Feltham:Acta Met., 1957, vol. 5, p. 97.

    Article  CAS  Google Scholar 

  21. Refs. 13-17 in Ref. 16.

  22. E. E. Underwood:Quantitative Microscopy, pp. 91-95, McGraw-Hill, 1968.

  23. K. Okazaki and H. Conrad:Trans. Japan Inst. Met., 1972, vol. 13, p. 198.

    CAS  Google Scholar 

  24. G. H. Gulliver:J. Inst. Metals, 1918, vol. 19, p. 145.

    Google Scholar 

  25. F. C. Hull and W. J. Houk:AIME Trans., 1953, vol. 197, p. 565.

    Google Scholar 

  26. P. A. Beck:Phil. Mag. Suppl., 1954, vol. 3, p. 245.

    Google Scholar 

  27. C. J. McHargue and J. P. Hammond:AIME Trans., 1953, vol. 197, p. 57.

    Google Scholar 

  28. M. Garfinkle and R. G. Garlick:Trans. TMS-AIME, 1968, vol. 242, p. 809.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K. Okazaki, Formerly Visiting Research Associate, Metallurgical Engineering and Materials Science Department, University of Kentucky, Lexington, Ky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, K., Conrad, H. Recrystallization and grain growth in titanium: I. characterization of the structure. Metall Trans 3, 2411–2421 (1972). https://doi.org/10.1007/BF02647044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647044

Keywords

Navigation