Skip to main content
Log in

Brittle fracture: Weakest link or process zone control?

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Does brittle fracture instability start from a single event such as a cracked carbide or sulfide or does it start from a series of discontinuous cleavage events, which coalesce together? In fact, either of these may occur depending on the test temperature (low or high), the amount of stored elastic energy at a crack tip (blunt or sharp), and the microstructure of brittle second phases (coarse or fine). The present study was to sort out which of these processes occurs in a coarse-grained high strength, low alloy (HSLA) steel tested at—80 °C (193 K). Statistical distributions of grains and fracture origins were identified in this 108 µm grain size steel. This was accomplished with compact tension specimens equipped with plezoceramic transducers to evaluate microcleavage onset. Termination of the test at various stress intensity levels, KI, followed by fatigue cracking at ΔK << K,I, allowed isolation of multiple cleavage origins. Both the amount of cleavage fracture and a preliminary estimate of fracture toughness could be interpreted in terms of process zone concepts. These rely on a local cleavage fracture stress controlled by microgeometry and a quasi-static equilibrium governed by the process zone size and strength. The conclusion for the steel in the present study is that a discontinuous process zone approach is most descriptive of the stochastic events leading up to brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Lin, A. G. Evans, and R. O. Ritchie:Acta Metall., 1986, vol. 34, no. 11, pp. 2205–16.

    Article  CAS  Google Scholar 

  2. J. Dvorak: inFracture 1969, P. L. Pratt, E. H. Andrews, R. L. Bell, N. E. Frost, R. W. Nichols, and E. Smith, eds., Chapman and Hall, London, 1969, pp. 338–49.

    Google Scholar 

  3. R. G. Hoagland, A. R. Rosenfield, and G. T. Hahn:Metall. Trans., 1972, vol. 3, pp. 123–36.

    CAS  Google Scholar 

  4. W. W. Gerberich and N. Moody: inFatigue Mechanisms, J. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 292–341.

    Google Scholar 

  5. W. W. Gerberich:Fracture and Interactions of Microstructure, Mechanism and Mechanics, J. M. Wells and J. D. Landes, eds., TMS-AIME, Warrendale, PA, 1985, pp. 49–74.

    Google Scholar 

  6. K. A. Esaklul, W. W. Gerberich, and J. P. Lucas: inInt. Conf. on Technology and Applications of HSLA Steel, ASM Metals Congress Paper 8306-020, ASM, Metals Park, OH, 1983.

    Google Scholar 

  7. ASTM Standard E399-81, Annual Book of ASTM Standards, Part 10, 1981.

  8. W.W. Gerberich and E. Kurman:Scripta Metall., 1985, vol. 19, pp. 295–98.

    Article  CAS  Google Scholar 

  9. C. S. Lee, T. Livne, and W. W. Gerberich:Scripta Metall., 1986, vol. 20, pp. 1137–40.

    Article  CAS  Google Scholar 

  10. H. N.G. Wadley, C. B. Scruby, and J. H. Speake:Intern. Metals Revs., 1980, no. 2, pp. 41–64.

    Google Scholar 

  11. J. D. Desai and W. W. Gerberich:Engng. Fract. Mech., 1975, vol. 7, pp. 153–65.

    Article  Google Scholar 

  12. W. W. Gerberich and K. Jatavallabhula: inNondestructive Evaluation: Microstructural Characterization and Reliability Strategies, O. Buck and S.M. Wolf, eds., TMS-AIME, Warrendale, PA, 1981, pp. 319–48.

    Google Scholar 

  13. M. Kaczorowski and W. W. Gerberich:Scripta Metall., 1986, vol. 20, pp. 1597–1600.

    Article  CAS  Google Scholar 

  14. J. Huit and F. McClintock:9th Intern. Congress Appl. Mech., Brussels, 1956, vol. 8, pp. 51–58.

    Google Scholar 

  15. W. W. Gerberich and N. Moody: inFracture 1977, D. M. R. Taplin, ed., ICF4, Waterloo, ON, Canada, 1977, vol. 3, pp. 829–37.

    Google Scholar 

  16. W. W. Gerberich and A. G. Wright: inProc. 2nd Int. Conf. on Mate rials Degradation, Virginia Tech. Printing, Blacksburg, VA, 1981, pp. 183–206.

    Google Scholar 

  17. G. T. Hahn and A. R. Rosenfield:Trans. ASM, 1966, vol. 59, p. 909.

    CAS  Google Scholar 

  18. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, pp. 271–78.

    CAS  Google Scholar 

  19. R. O. Ritchie: Metal Science, Aug./Sept. 1977, pp. 368–81.

  20. a.W. W. Gerberich: “Metallurgical Aspects of Crack-Tip Failure Processes,” ASTM Special Tech. Publ., 1986, in press.

  21. b.W. W. Gerberich: “Metallurgical Aspects of Crack-Tip Failure Processes,” ASTM Special Tech. Publ. 945, R.P. Reed and D. T. Read, eds., Philadelphia, PA, 1987, pp. 5–18.

    Google Scholar 

  22. D.S. Dugdale:J. Mech. Phys. Solids, 1960, vol. 8, pp. 100–08.

    Article  Google Scholar 

  23. G.I. Barenblatt:in Adv. in Applied Mech., H.L. Dryden and T. von Karman, eds., Academic Press, New York, NY, 1962, vol. 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “Stochastic Aspects of Fracture” held at the 1986 annual AIME meeting in New Orleans, LA, on March 2-6, 1986, under the auspices of the ASM/MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Chen, S.H., Lee, C.S. et al. Brittle fracture: Weakest link or process zone control?. Metall Trans A 18, 1861–1875 (1987). https://doi.org/10.1007/BF02647016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647016

Keywords

Navigation