Skip to main content
Log in

Stochastic processes in creep cavitation

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The deterministic as well as stochastic aspects of creep cavitation as they are manifested in cavity size distributions are investigated. Assuming continuous nucleation of grain boundary cavities at a constant rate, expected shapes of size distributions are derived for quasi-equilibrium diffusive, crack-like diffusive, and plastic cavity growth. Experimental size distributions are often quite different from anticipated ones. It is nevertheless possible to verify the rate-controlling cavity growth mechanism by numerically solving integral equations for successive experimental size distributions. This technique is illustrated for three different growth mechanisms. Several previously-used approaches to incorporate internal stresses into the evolution of size distributions are reviewed. Assuming that the growth law can be firmly established, possible methods to derive either internal stress distributions or coalescence rates from analyses of size distributions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Conrad:Mechanical Behavior of Materials at Elevated Temperatures, J. E. Dorn, ed., McGraw-Hill, New York, NY, 1961, pp. 218–69.

    Google Scholar 

  2. R. W. Swindeman, V. K. Sikka, and R. L. Klueh:Metall. Trans. A, 1983, vol. 14A, pp. 581–93.

    Google Scholar 

  3. C. L. White, J. H. Schneibel, and R. A. Padgett:Metall. Trans. A, 1983, vol. 14A, pp. 595–610.

    Google Scholar 

  4. J. H. Schneibel, C. L. White, and M. H. Yoo:Metall. Trans. A, 1985, vol. 16A, pp. 651–60.

    CAS  Google Scholar 

  5. M. H. Yoo, C.L. White, and H. Trinkaus: “Interfacial Segregation and Fracture,” inFlow and Fracture at Elevated Temperatures, R. Raj, ed., ASM, Metals Park, OH, 1985, pp. 349–82.

    Google Scholar 

  6. F. Garofalo, R. W. Whitmore, W. F. Domis, and F. von Gemmingen:Trans. TMS-AIME, 1961, vol. 221, pp. 310–19.

    CAS  Google Scholar 

  7. S. J. Fariborz, D.G. Harlow, and T. J. Delph:Acta Metall., 1985, vol. 33, pp. 1–9.

    Article  CAS  Google Scholar 

  8. S. J. Fariborz, D. G. Harlow, and T. J. Delph:Acta Metall., 1986, vol. 34, pp. 1433–41.

    Article  Google Scholar 

  9. R. Raj and M. F. Ashby:Acta Metall., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  10. H. Trinkaus and H. Ullmaier:Philos. Mag., 1979, vol. 39, pp. 563–80.

    CAS  Google Scholar 

  11. J. H. Schneibel, G. F. Petersen, and C. T. Liu:J. Mater. Res., 1986, vol. 1, pp. 68–72.

    CAS  Google Scholar 

  12. E. E. Underwood: inQuantitative Microscopy, R. T. DeHoff and F. N. Rhines, eds., McGraw-Hill, New York, NY, 1968, pp. 149–81.

    Google Scholar 

  13. M. V. Speight and W. Beeré:Metal. Sci., 1975, vol. 9, pp. 190–91.

    Google Scholar 

  14. H. Trinkaus:Ber. Bunsenges. Phys. Chem., 1978, vol. 82, pp. 249–53.

    CAS  Google Scholar 

  15. T.-J. Chuang and J. R. Rice:Acta Metall., 1973, vol. 21, pp. 1625–28.

    Article  Google Scholar 

  16. J. W. Hancock:Metal. Sci., 1976, vol. 10, pp. 319–25.

    Article  CAS  Google Scholar 

  17. N. Ridley, D. W. Livesey, and A. K. Mukherjee:J. Mater. Sci., 1984, vol. 19, pp. 1321–32.

    Article  CAS  Google Scholar 

  18. I-W. Chen and A.S. Argon:Acta Metall., 1981, vol. 29, pp. 1759–68.

    Article  CAS  Google Scholar 

  19. T. -J. Chuang, K. I. Kagawa, J. R. Rice, and L. B. Sills:Acta Metall., 1979, vol. 27, pp. 265–84.

    Article  CAS  Google Scholar 

  20. L. Martinez and W. D. Nix:Metall. Trans. A, 1982, vol. 13A, pp. 427–37.

    CAS  Google Scholar 

  21. A. Needleman and J.R. Rice:Acta Metall., 1980, vol. 28, pp. 1315–32.

    Article  CAS  Google Scholar 

  22. L. Martinez and W. D. Nix:Scripta Metall., 1981, vol. 15, pp. 757–61.

    Article  Google Scholar 

  23. B. F. Dyson:Metal Sci., 1976, vol. 10, pp. 349–53.

    Google Scholar 

  24. B. F. Dyson:Can. Metall. Quart., 1979, vol. 18, pp. 31–38.

    Google Scholar 

  25. H. Riedel:Z. Metallkde., 1985, vol. 76, pp. 669–75.

    CAS  Google Scholar 

  26. M. S. Yang and J. R. Weertman:Scripta Metall., 1984, vol. 18, pp. 543–48.

    Article  CAS  Google Scholar 

  27. I.-W. Chen and A. S. Argon:Acta Metall., 1981, vol. 29, pp. 1321–33.

    Article  CAS  Google Scholar 

  28. G. W. Greenwood:Philos. Mag., 1969, vol. 19, pp. 423–29.

    Google Scholar 

  29. J. H. Schneibel and L. Martinez:Philos. Mag. A, 1986, vol. 54, pp. 489–500.

    CAS  Google Scholar 

  30. N. Louat:Acta Metall., 1974, vol. 22, pp. 721–24.

    Article  CAS  Google Scholar 

  31. I-W. Chen:Metall. Trans. A, 1983, vol. 14A, pp. 2289–93.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “Stochastic Aspects of Fracture” held at the 1986 annual AIME meeting in New Orleans, LA, on March 2-6, 1986, under the auspices of the ASM/MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneibel, J.H., Martinez, L. Stochastic processes in creep cavitation. Metall Trans A 18, 1835–1842 (1987). https://doi.org/10.1007/BF02647013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647013

Keywords

Navigation