Skip to main content
Log in

Mechanical properties of fully densified injection-molded carbonyl iron powder

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties of carbonyl iron powder shaped by injection molding techniques are affected by the grain size, sintered density, and carbon content. Control of the carbon level depends on several factors, including the binder composition, debinding approach, and sintering conditions (atmosphere, temperature, time, and furnace design). Sintered compacts were densified by containerless hot isostatic pressing, giving smaller grain sizes and superior properties than were possible by pressureless sintering at a high temperature. A quick hot isostatic pressing route (gas forging) with a peak pressure higher than 500 MPa for 1 minute helps retain carbon and results in excellent properties due to a high final density and small grain size. This approach resulted in a final strength of 732 MPa with extensive ductility (23 pct reduction of area) for injection-molded carbonyl iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. German:Powder Injection Molding, Metal Powder Industries Federation, Princeton, NJ, 1990, pp. 1–22, pp. 457–58.

    Google Scholar 

  2. J. E. Japka:J. Met., 1988, vol. 40 (8), pp. 18–21.

    CAS  Google Scholar 

  3. F. L. Ebenhoech:Prog. Powder Metall., 1986, vol. 42, pp. 133–40.

    CAS  Google Scholar 

  4. R. M. German:Adv. Powder Metall., 1989, vol. 3, pp. 51–66.

    CAS  Google Scholar 

  5. G. Cizeron:Compt. Rend., 1958, vol. 244, pp. 3060–63.

    Google Scholar 

  6. G. Cizeron:Compt. Rend., 1957, vol. 245, pp. 2051–54.

    CAS  Google Scholar 

  7. F. V. Lenel, G. S. Ansell, and J. R. Strife:Modern Developments in Powder Metallurgy, H. H. Hausner and W. E. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1974, vol. 6, pp. 275–92.

    Google Scholar 

  8. H. Fischmeister:Iron Powder Metallurgy, H. H. Hausner, K. H. Roll, and P. K. Johnson, eds., Plenum Press, New York, NY, 1968, pp. 262–83.

    Google Scholar 

  9. E. Aigeltinger and J. P. Drolet:Modern Developments in Powder Metallurgy, H. H. Hausner and W. E. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1974, vol. 6, pp. 323–41.

    Google Scholar 

  10. K. Nii:Z. Metallkd., 1970, vol. 61, pp. 935–41.

    CAS  Google Scholar 

  11. R. Watanabe and Y. Masuda:Trans. Jpn. Inst. Met., 1972, vol. 13, pp. 134–39.

    Google Scholar 

  12. M. Oxley and G. Cizeron:Int. J. Powder Metall., 1965, vol. 1 (2), pp. 15–27.

    CAS  Google Scholar 

  13. J. J. Bacmann and G. Cizeron:Int. J. Powder Met., 1969, vol. 5 (2), pp. 39–53.

    CAS  Google Scholar 

  14. C. W. Corti and P. Cotterill:Powder Metall. Int., 1974, vol. 6, pp. 23–25.

    Google Scholar 

  15. B. N. Singh and D. H. Houseman:Powder Metall. Int., 1971, vol. 3, pp. 26–29.

    CAS  Google Scholar 

  16. D. Uskokovic, D. Delic, and M. M. Ristic:Int. J. Powder Metall. Powder Technol., 1975, vol. 11, pp. 189–93.

    CAS  Google Scholar 

  17. H. Hickling and D. S. Coleman:Powder Metall., 1982, vol. 25, pp. 25–34.

    CAS  Google Scholar 

  18. K. F. Hens, S. T. Lin, R. M. German, and D. Lee:JOM, 1989, vol. 41 (8), pp. 17–21.

    CAS  Google Scholar 

  19. B. K. Lograsso, A. Bose, B. J. Carpenter, C. I. Chung, K.F. Hens, D. Lee, S. T. Lin, C. X. Liu, R. M. German, R. M. Messler, P. F. Murley, B. O. Rhee, C.M. Sierra, and J. Warren:Int. J. Powder Metall., 1989, vol. 25, pp. 337–48.

    CAS  Google Scholar 

  20. D. S. Madan: Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1988.

    Google Scholar 

  21. A. R. Poster and H. H. Hausner:Modern Developments in Powder Metallurgy, H. H. Hausner, ed., Plenum Press, New York, NY, 1966, vol. 2, pp. 26–43.

    Google Scholar 

  22. T. T. Lam: Report No. LBL-8001, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, June 1978.

  23. S. T. Lin and R. M. German:Powder Metall. Int., 1989, vol. 21 (5), pp. 19–24.

    CAS  Google Scholar 

  24. L. C. Browning, T. W. Dewitt, and P. H. Emmett:J. Am. Chem. Soc, 1950, vol. 72, pp. 4211–17.

    Article  CAS  Google Scholar 

  25. O. Kubaschewski and J. A. Catterall:Thermochemical Data of Alloys, Pergamon Press, London, 1956, pp. 64–68.

    Google Scholar 

  26. L. S. Darkin and R. W. Gurry:Physical Chemistry of Metals, McGraw-Hill, New York, NY, 1953, pp. 212–22.

    Google Scholar 

  27. R. M. Conaway:Adv. Mater. Processes, 1989, June, vol. 137, pp. 35–39.

    Google Scholar 

  28. R. E. Wiech, Jr.: U. S. Patent No. 4,661,315, April 28, 1987.

  29. P. Bhave, W. Dormon, and D. Teel:Modern Developments in Powder Metallurgy, P.U. Gummeson and D. A. Gustafson, eds., Metal Powder Industries Federation, Princeton, NJ, 1988, vol. 18, pp. 333–49.

    Google Scholar 

  30. D. R. Gaskell:Introduction to Metallurgical Thermodynamics, 2nd ed., McGraw-Hill, New York, NY, 1981, pp. 272–316.

    Google Scholar 

  31. E. A. Brandes:Smithells Metals Reference Book, 6th ed., Butterworth’s, London, 1983, pp. 22–128.

    Google Scholar 

  32. R. Haynes:The Mechanical Behaviour of Sintered Metal, Freund Publishing House, London, 1981.

    Google Scholar 

  33. A. Salak, V. Miskovic, E. Dudrova, and E. Rudnayova:Powder Metall. Int., 1974, vol. 6, pp. 128–32.

    Google Scholar 

  34. R. Haynes:Powder Metall., 1977, vol. 20, pp. 17–20.

    CAS  Google Scholar 

  35. M. D. Hamiuddin:Powder Metall. Int., 1986, vol. 18, pp. 73–76.

    CAS  Google Scholar 

  36. J. A. Lund:Can. Metall. Q., 1984, vol. 23, pp. 131–37.

    CAS  Google Scholar 

  37. S. L. Forss:Modern Developments in Powder Metallurgy, H. H. Hausner, ed., Plenum Press, New York, NY, 1966, vol. 2, pp. 3–11.

    Google Scholar 

  38. R. L. Coble:Powder Metall. Int., 1978, vol. 10 (3), pp. 128–30.

    CAS  Google Scholar 

  39. E. Arzt, M. F. Ashby, and K. E. Easterling:Metall. Trans. A, 1983, vol. 14A, pp. 211–21.

    Google Scholar 

  40. M. R. Ashby:Hot Isostatic Pressing Diagrams HIP 487, Update May 1988, Engineering Department, Cambridge University, Cambridge, Sept. 1987.

    Google Scholar 

  41. K. Isonishi and M. Tokizane.Int. J. Powder Metall., 1989, vol. 25, pp. 187–94.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.T., German, R.M. Mechanical properties of fully densified injection-molded carbonyl iron powder. Metall Trans A 21, 2531–2538 (1990). https://doi.org/10.1007/BF02646998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646998

Keywords

Navigation