Skip to main content
Log in

Hydrogen embrittlement of a cyclically deformed high strength Al alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

High cycle fatigue experiments have been performed on a 7075 Al alloy, principally in the T6 temper in dry air, distilled water 0.5N NaCl and 0.5N Na2SO4 solutions as functions of cathodic charging and catalyst poisoning of the hydrogen evolution reaction. All aqueous solutions appreciably lowered fatigue resistance with Cl-ion producing the greatest reduction in resistance and SO4 =ion behaving essentially in the same manner as distilled water. Under cathodic charging conditions fatigue resistance is significantly reduced and both Cl- and SO4 =solutions produce similar fatigue lives. A catalyst poison (As) added to Cl- solutions reduces fatigue resistance relative to neutral Cl- solutions. Fractography of specimens fatigued in aqueous environments shows that a significant amount of cleavage and quasicleavage occurs, the extent of these features being apparently a function of hydrogen available to the alloy free surface and to the tips of growing cracks. On the basis of these observations, it is suggested that corrosion fatigue of 7075 alloy is essentially a hydrogen embrittlement phenomenon where the low diffusivity of hydrogen is counterbalanced by the fact that hydrogen need only be present in the alloy free surface for crack initiation and in the plastic zone of growing cracks for propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Stubbington:Metallurgia, 1963, vol. 68, p. 109.

    CAS  Google Scholar 

  2. P. J. E. Forsyth:Acta Met., 1963, vol. 11, p. 703.

    Article  Google Scholar 

  3. M. O. Speidel, M. J. Blackburn, T. R. Beck, and J. A. Feeney:Corros. Fatigue, p. 324, NACE, Houston, 1972.

    Google Scholar 

  4. R. E. Stoltz and R. M. Pelloux:Met. Trans., 1972, vol. 3, p. 2433.

    CAS  Google Scholar 

  5. R. M. Pelloux:Fracture 1969, Proc. Int. Conf. on Fracture, Brighton, p. 731.

  6. R. J. Selines and R. M. Pelloux:Met. Trans., 1972, vol. 3, p. 2525.

    CAS  Google Scholar 

  7. T. Broom and A. Nicholson:J. Inst. Metals, 1960, vol. 89, p. 183.

    Google Scholar 

  8. L. V. Corsetti and D. J. Duquette:Met. Trans., 1974, vol. 5, p. 1087.

    CAS  Google Scholar 

  9. E. F. Smith, III, R. J. Jacko, and D. J. Duquette:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., p. 218, AIME, N.Y., 1976.

    Google Scholar 

  10. D. O. Sprowls and R. H. Brown:Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. Van Rooyen, eds., p. 466, NACE, Houston, 1969.

    Google Scholar 

  11. B. G. Ateya and H. W. Pickering:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., p. 207, Amer. Soc. for Metals, Metals Park, 1974.

    Google Scholar 

  12. K. Endo, K. Komai, and Y. Watase:J. Mater. Sci., Japan, 1975, vol. 24, p. 1140.

    CAS  Google Scholar 

  13. J.K. Tien:Effects of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., p. 309, AIME, N.Y., 1976.

    Google Scholar 

  14. H. H. Johnson and J. P. Hirth:Met. Trans. A, 1976, vol. 7a, p. 1543.

    CAS  Google Scholar 

  15. E. F. Smith, III: Rensselaer Polytechnic Institute, private communication, 1976.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacko, R.J., Duquette, D.J. Hydrogen embrittlement of a cyclically deformed high strength Al alloy. Metall Trans A 8, 1821–1827 (1977). https://doi.org/10.1007/BF02646889

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646889

Keywords

Navigation