Skip to main content
Log in

Deformation behavior of irradiated Zr-2.5Nb pressure tube material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A study of the deformation behavior of irradiated highly textured Zr-2.5Nb pressure tube material in the temperature range of 30 °C to 300 °C was undertaken to understand better the mechanism for the deterioration of the fracture toughness with neutron irradiation. Strain localization behavior, believed to be a main contributor to reduced toughness, was observed in irradiated transverse tensile specimens at temperatures greater than 100 °C. The strain localization behavior was found to occur by the cooperative twinning of the highly textured grains of the material, resulting in a local softening of the material, where the flow then localizes. It is believed that the effect of the irradiation is to favor twinning at the expense of slip in the early stages of deformation. This effect becomes more pronounced at higher temperature, thus leading to the high-temperature strain localization behavior of the material. A limited amount of dislocation channeling was also observed; however, it is not considered to have a major role in the strain localization behavior of the material. Contrary to previous reports on irradiated zirconium alloys, static strain aging is observed in the irradiated material in the temperature range of 150 °C to 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Simpson and C. K. Chow:Zirconium in the Nuclear Industry: 7th Int. Symp., ASTM STP 939, R.B. Actamson and L.F.Van Swam, eds., ASTM, Philadelphia, PA, 1987, pp. 579–96.

    Google Scholar 

  2. C. K. Chow, C. E. Coleman, R. R. Hosbons, P. H. Davies, M. Griffiths, and R. Choubey:Zirconium in the Nuclear Industry: 9th Int. Symp., ASTM STP 1132, CM. Eucken and A. M. Garde, eds., ASTM, Philadelphia, PA, 1991, pp. 246–75.

    Google Scholar 

  3. T. Onchi, H. Kayano, and Y. Higashiguchi:J. Nucl. Mater., 1980, vol. 88, pp. 226–35.

    Article  CAS  Google Scholar 

  4. H. S. Rosenbaum, G. F. Rieger, and D. Lee:Metall. Trans., 1974, vol. 5, pp. 1867–74.

    CAS  Google Scholar 

  5. C. K. Chow and L. A.-Simpson:Nonlinear Fracture Mechanics: Volume II—Elastic-Plastic Fracture, ASTM STP 995, J. D. Landes, A. Saxena, and J. G. Merkle, eds., ASTM, Philadelphia, PA, 1989, pp. 537–62.

    Google Scholar 

  6. W. R. Thorpe and I. O. Smith:J. Nucl. Mater., 1978, vol. 78, pp. 49–57.

    Article  CAS  Google Scholar 

  7. K. Veevers and W. B. Rotsey:J. Nucl. Mater., 1968, vol. 27, pp. 108–11.

    Article  CAS  Google Scholar 

  8. D. Lee:Trans. ASM, 1968, vol. 61, pp. 742–49.

    Google Scholar 

  9. M. H. Yoo:Metall. Trans. A, 1981, vol. 12A, pp. 409–18.

    Google Scholar 

  10. E. Tenckoff:Deformation Mechanisms, Texture and Anisotropy in Zirconium and Zircaloy, ASTM STP 966, Philadelphia, PA, 1988, p. 30.

    Google Scholar 

  11. J. A. Jensen and W. A. Backofen:Can. Metall. Q., 1972, vol. 11 (1), pp. 39–51.

    Google Scholar 

  12. P. M. Kelly and P. D. Smith:J. Nucl. Mater., 1973, vol. 46, pp. 23–34.

    Article  CAS  Google Scholar 

  13. A. M. Garde, E. Aigeltinger, B.N. Woodruff, and R. E. Reed- Hill,Metall. Trans. A. 1975, vol. 6A, pp. 1183–88.

    CAS  Google Scholar 

  14. Z. Trojanová and P. Lukáč:Cryst. Res. Technol., 1984, vol. 19 (3), pp. 401–05.

    Article  Google Scholar 

  15. W. R. Thorpe and I. O. Smith:J. Nucl. Mater., 1979, vol. 80, pp. 35–42.

    Article  CAS  Google Scholar 

  16. T. K. Sinha and M. K. Asundi:J. Nucl. Mater., 1977, vol. 67, pp. 315–17.

    Article  CAS  Google Scholar 

  17. W. B. James and T. J. Davies:Met. Sci., 1974, vol. 8, pp. 84–90.

    CAS  Google Scholar 

  18. E.de Paula e Silva, J. Com-nougué, G. Béranger, and P. Lacombe:Scripta Metall., 1971, vol. 5, pp. 795–800.

    Article  Google Scholar 

  19. I. G. Ritchie, H. E. Rosinger, and A. Atrens:J. Nucl. Mater., 1976, vol. 62, pp. 1–8.

    Article  CAS  Google Scholar 

  20. K. Veevers, W.B. Rotsey, and K.U. Snowden:Applications- Related Phenomena for Zirconium and Its Alloys, ASTM STP 458, ASTM, 1969, pp. 194-209.

  21. A. A. Bauer and L. M. Lowry:J. Nucl. Technol., 1978, vol. 41, pp. 359–72.

    CAS  Google Scholar 

  22. K. U. Snowden and K. Veevers:Radiat. Eff., 1973, vol. 20, pp. 169–74.

    CAS  Google Scholar 

  23. A. M. Garde:Zirconium in the Nuclear Industry. 8th Int. Symp., ASTM STP 1023, L.F.P.Van Swam and C.M. Euken, eds., ASTM, Philadelphia, PA, 1989, pp. 548–69.

    Google Scholar 

  24. R. W. K. Honeycombe:The Plastic Deformation of Metals, 2nd ed., Edward Arnold Ltd., London, 1984, pp. 241–43.

    Google Scholar 

  25. C. E. Coleman, D. Mills, and J.van der Kurr:Can. Metall. Q., 1972, vol. 11 (1), pp. 91–100.

    Google Scholar 

  26. B. A. Cheadle, C. E. Ellis, and J.van der Kurr:Zirconium in Nuclear Applications, ASTM STP 551, ASTM, Philadelphia, PA, 1974, pp. 370–84.

    Google Scholar 

  27. T. Onchi, H. Kayano, and Y. Higashiguchi:J. Nucl. Mater., 1983, vol. 116, pp. 211–18.

    Article  CAS  Google Scholar 

  28. T. Yasuda, M. Nakatsuka, and K. Yamashita:Zirconium in the Nuclear Industry: Seventh International Symposium, ASTM STP 939, R.B. Actamson and L.F.P. Van Swam, eds., ASTM, Philadelphia, PA, 1987, pp. 734–47.

    Google Scholar 

  29. C. E. Ells and C D. Williams:TMS-AIME, 1969, vol. 245, pp. 1321–28.

    CAS  Google Scholar 

  30. A. V. Chirkin, A. S. Al-Nakow, and S. M. Sherif:J. Nucl. Mater., 1991, vol. 178, pp. 27–32.

    Article  CAS  Google Scholar 

  31. R. E. Reed-Hill and D. H. Baldwin:TMS-AIME, 1965, vol. 233, pp. 842–44.

    CAS  Google Scholar 

  32. E. Tenckoff:Deformation Mechanisms, Texture and Anisotropy in Zirconium and Zircaloy, ASTM STP 966, Philadelphia, PA, 1988, p. 23.

    Google Scholar 

  33. T. Onchi, H. Kayano, and Y. Higashiguchi:J. Nucl. Sci. Technol., 1977, vol. 14 (5), pp. 359–69.

    Google Scholar 

  34. Y. Higashiguchi and H. Kayano:J. Nucl. Sci. Technol., 1978, vol. 15 (4), pp. 263–71.

    Google Scholar 

  35. Y. Higashiguchi, H. Kayano, and T. Onchi:J. Nucl. Mater., 1979, vol. 80, pp. 24–34.

    Article  CAS  Google Scholar 

  36. O. Vöhringer:Second Int. Conf. Strength of Metals and Alloys, August 30-September 4, 1970, Pacific Grove, CA, ASM, 1970, vol. 1, pp. 294–98.

    Google Scholar 

  37. J. J. Fundenberger, M. J. Philippe, and C. Esling:Scripta Metall., 1990, vol. 24, pp. 1215–20.

    Article  CAS  Google Scholar 

  38. R.W. Gilbert, K. Farrell, and C.E. Coleman:J. Nucl. Mater., 1979, vol. 84, pp. 137–48.

    Article  CAS  Google Scholar 

  39. A. Jostons, P.M. Kelly, and R. G. Blake:J. Nucl. Mater., 1977, vol. 66, pp. 236–56.

    Article  Google Scholar 

  40. M. Nakatsuka and M. Nagai:J. Nucl. Sci. Technol., 1987, vol. 24 (10), pp. 832–38.

    Article  Google Scholar 

  41. O. T. Woo, G. J. C Carpenter, and S. R. MacEwen:J. Nucl. Mater., 1979, vol. 87, pp. 70–80.

    Article  CAS  Google Scholar 

  42. R. Choubey: AECL, Whiteshell Laboratories, Pinawa, MB Canada, unpublished research, 1992. $

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himbeault, D.D., Chow, C.K. & Puls, M.P. Deformation behavior of irradiated Zr-2.5Nb pressure tube material. Metall Mater Trans A 25, 135–145 (1994). https://doi.org/10.1007/BF02646682

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646682

Keywords

Navigation