Skip to main content
Log in

Effects of Heat Treatment and Reinforcement Size on Reinforcement Fracture during Tension Testing of a SiCp Discontinuously Reinforced Aluminum Alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of heat-treatment, matrix microstructure, and reinforcement size on the evolution of damage, in the form of SiCp cracking, during uniaxial tension testing of an aluminum-alloy based composite have been determined. A powder metallurgy Al-Zn-Mg-Cu alloy reinforced with 15 vol pct of either 5 or 13 μm average size SiCp was heat treated to solution annealed (SA), underaged (UA), and overaged (OA) conditions. The SA treatment exhibited lower yield strength and higher ductility for both particulate sizes compared to the UA and OA conditions. The evolution of damage, in the form of SiCp fracture, was monitored quantitatively using metallography and changes in modulus on sequentially strained specimens. It is shown that the evolution of SiCp fracture is very dependent on particulate size, matrix aging condition, and the details of the matrix-reinforcement interfacial regions. SiCp fracture was exhibited by the UA and OA treatment over a range of strains, while a preference for failure near the SiCp/matrix interfaces and in the matrix was exhibited in the OA material. While thepercentage of cracked SiCp at each global strain typically was equal or somewhat lower in the material reinforced with 5 μm average size SiCp, theabsolute number of cracked SiCp was always higher at each global stress and strain in the material containing 5 μm average size SiCp, for each heat treatment. Damage(e.g., voids) in the matrix and near the SiCp/matrix interfaces was additionally observed, although its extent was highly matrix and particle-size dependent. It was always observed that increases in stress (and strain) produced a larger amount of fractured SiCp. However, neither a global stress-based nor a global strain-based model was sufficient in converging the amount of SiCp fractured for all heat treatments and particle sizes tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dutta, CF. Tiedemann, and T.R. McNelley:Scripta Metall., 1990, vol. 24, pp. 1233–38.

    Article  CAS  Google Scholar 

  2. T.M. Osman, J.J. Lewandowski, and W.H. Hunt, Jr.: inFabrication of Paniculate Reinforced Metal Composites, J. Masenauve, ed., ASM INTERNATIONAL, Montreal, 1990, p. 209.

    Google Scholar 

  3. G.A. Rozak, A.A. Altmisolgu, J.J. Lewandowski, and J.F. Wallace:J. Compos. Mater., 1992, vol. 26, pp. 2076–2106.

    Article  CAS  Google Scholar 

  4. G.A. Rozak, J.J. Lewandowski, A.A. Altmisoglu, and J.F. Wallace: SAE Paper No. 930180, 1993.

  5. G.A. Rozak: Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio, 1993.

    Google Scholar 

  6. J.J. Lewandowski, C. Liu, and W.H. Hunt, Jr.: inProcesses and Properties for Powder Metallurgy Composites, P. Kumar, K. Vedula, and A. Ritter, eds., TMS, Warrendale, PA, 1988, pp. 117–31.

    Google Scholar 

  7. J.J. Lewandowski, C. Liu, and W.H. Hunt, Jr.:Mater. Sci. Eng., 1989, vol. A107, pp. 142–55.

    Google Scholar 

  8. M. Manoharan and J.J. Lewandowski:Acta Metall. Mater., 1990, vol. 38 (3), pp. 489–96.

    Article  CAS  Google Scholar 

  9. M. Manoharan and J.J. Lewandowski:Mater. Sci. Eng., 1992, vol. A150, pp. 179–86.

    Article  CAS  Google Scholar 

  10. D.S. Liu, M. Manoharan, and J.J. Lewandowski:Metall. Trans. A, 1989, vol. 20A, pp. 2409–17.

    Article  CAS  Google Scholar 

  11. C.P. You, A.W. Thompson, and I.M. Bernstein:Scripta Metall., 1987, vol. 21, pp. 181–87.

    Article  CAS  Google Scholar 

  12. W.H. Hunt, Jr., J.R. Brockenbourgh, and P.E. Magnusen:Scripta Metall., 1991, vol. 25, pp. 15–20.

    Article  CAS  Google Scholar 

  13. M. Strangwood, C. Hippsley, and J.J. Lewandowski:Scripta Metall., 1990, vol. 24, pp. 1483–87.

    Article  CAS  Google Scholar 

  14. D.J. Lloyd:Acta Metall., 1991, vol. 39 (1), pp. 59–71.

    Article  CAS  Google Scholar 

  15. S.V. Karaat, J.P. Hirth, and R. Mehrabian:Acta Metall, 1989, vol. 37 (9), pp. 2395–2405.

    Article  Google Scholar 

  16. R.J. Arsenault, N. Shi, C.R. Feng, and L. Wang:Mater. Sci. Eng., 1991, vol. A131, pp. 55–68.

    Article  CAS  Google Scholar 

  17. P. Mummery and B. Derby:Mater. Sci. Eng., 1991, vol. A135, pp. 221–24.

    Article  CAS  Google Scholar 

  18. W.H. Hunt, Jr., T.M. Osman, and J.J. Lewandowski:JOM, 1993, vol. 45, pp. 30–35.

    Article  CAS  Google Scholar 

  19. C. Liu and J.J. Lewandowski:Advanced Structural Materials, Symp. Proc. Metallurgical Society Canadian Institute of Mining and Metallurgy, D. Wilkinson, ed., Pergamon Press, New York, NY, 1988, vol. 2, pp. 23–33.

    Google Scholar 

  20. Y. Brechet, J.D. Embury, S. Tao, and L. Luo:Acta Metall., 1991, vol. 39, pp. 1781–86.

    Article  CAS  Google Scholar 

  21. J.J. Lewandowski, D.S. Liu, and C. Liu:Scripta Metall., 1991, vol. 25, pp. 21–26.

    Article  CAS  Google Scholar 

  22. D.S. Liu, M. Manoharan, and J.J. Lewandowski:J. Mater. Sci. Lett., 1989, vol. 8, p. 1447.

    Article  CAS  Google Scholar 

  23. D.S. Liu and J.J. Lewandowski:Metall. Trans A, 1993, vol. 24A, pp. 601–09.

    Article  CAS  Google Scholar 

  24. D.S. Liu and J.J. Lewandowski:Metall. Trans A, 1993, vol. 24A, pp. 609–15.

    Article  CAS  Google Scholar 

  25. P.M. Singh and J.J. Lewandowski: Case Western Reserve University, Cleveland, OH, unpublished research, 1992.

  26. D.S. Liu, M. Manoharan, and J.J. Lewandowski:Scripta Metall., 1989, vol. 23, pp. 253–56.

    Article  CAS  Google Scholar 

  27. P.M. Singh and J.J. Lewandowski:Scripta Metall. Mater., 1993, vol. 29, pp. 199–204.

    Article  CAS  Google Scholar 

  28. P.M. Singh and J.J. Lewandowski: Case Western Reserve University, Cleveland, OH, unpublished research, 1993.

  29. D.S. Liu, B. Rickett, and J.J. Lewandowski: inFundamental Relationships Between Microstructure and Mechanical Behavior of Metal Matrix Composites, P.K. Liaw and M. Gungor, eds., TMS-AIME, Warrendale, PA, 1990, p. 145.

    Google Scholar 

  30. M. Manoharan and J.J. Lewandowski:Scripta Metall., 1989, vol. 23, pp. 1801–04.

    Article  CAS  Google Scholar 

  31. M. Manoharan and J.J. Lewandowski:Scripta Metall., 1990, vol. 24, pp. 12–18.

    Google Scholar 

  32. S.I. Hong and G.T. Gray:Acta Metall., 1990, vol. 38, p. 1581.

    Article  CAS  Google Scholar 

  33. M. Strangwood, C.A. Hippsley, and J.J. Lewandowski: inLow Density, High Temperature Powder Metallurgy Alloys, TMS, Warrendale, PA, 1991, pp. 97–108.

    Google Scholar 

  34. A.S. Argon and J. Im:Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    Article  CAS  Google Scholar 

  35. A.S. Argon, J. Im, and R. Safoglu:Metall. Trans. A, 1975, vol. 6, pp. 825–37.

    Article  Google Scholar 

  36. R.M. Aikin, Jr. and L. Christodoulou:Scripta Metall., 1991, vol. 25, pp. 9–14.

    Article  CAS  Google Scholar 

  37. A.K. Vasudevan, O. Richmond, F. Zok, and J.D. Embury:Mater. Sci. Eng., 1989, vol. A107, pp. 63–69.

    Article  CAS  Google Scholar 

  38. C. Liu, G.M. Michal, and J.J. Lewandowski: inResidual Stresses in Composites: Measurement, Modelling, and Thermomechanical Properties, E.V. Barrera and I. Dutta, eds., TMS-AIME, Warrendale, PA, 1993, pp. 239–57.

    Google Scholar 

  39. R.J. Arsenault and M. Taya:Acta Metall., 1987, vol. 35, pp. 651–59.

    Article  CAS  Google Scholar 

  40. R. Haaland, G.M. Michal, and G.C. Chottiner: inFundamental Relationships Between Microstructure and Mechanical Behavior of Metal Matrix Composites, P.K. Liaw and M. Gungor, eds., TMS-AIME, Warrendale, PA, 1990, pp. 779–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P.M., Lewandowski, J.J. Effects of Heat Treatment and Reinforcement Size on Reinforcement Fracture during Tension Testing of a SiCp Discontinuously Reinforced Aluminum Alloy. Metall Trans A 24, 2531–2543 (1993). https://doi.org/10.1007/BF02646532

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646532

Keywords

Navigation