Skip to main content
Log in

Importance of microplasticity in the fracture of silicon

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Notched, wedge-shaped silicon crystals were subjected to tensile deformation and canti-lever bending in the temperature range 500 to 800°C. The microplastic zones and elastic strain distribution ahead of the propagating crack were disclosed by combining various sensitive X-ray diffraction and electron microscopy methods. The importance of the mi-croplastic zones for the notch-brittle sensitivity was shown. The changes in fracture stress with deformation temperature were attributed to the ability of the strain-hardened plastic zones to constrain the residual elastic strains. Upon annealing, the elastic strains were eliminated by the sweeping of dislocation loops emanating from the boundaries of the con-straining microplastic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weissmann and Y. Tsunekawa:Met. Trans., 1973, vol. 4, pp. 376–77.

    Article  CAS  Google Scholar 

  2. H. Alexander and P. Haasen:Solid State Phys., 1968, vol. 22, pp. 27–158.

    Article  CAS  Google Scholar 

  3. H. Alexander:Z. Metallkde., 1961, vol. 52, pp. 344–52.

    CAS  Google Scholar 

  4. H. Alexander:Phys. Status. Solidi., 1968, vol. 26, pp. 725–41 ; ibid., 1968, vol. 27, pp. 391-412.

    Article  CAS  Google Scholar 

  5. N. Kato and A. R. Lang:Acta Cryst., 1959, vol. 12, pp. 787–94.

    Article  CAS  Google Scholar 

  6. S. Weissmann:J. Appl. Phys., 1956, vol. 27, pp. 389–95 ;Trans. ASM, 1960, vol. 52, pp. 599-614.

    Article  CAS  Google Scholar 

  7. V. Weiss: inFracture, 1971, vol. 3, pp. 227–64.

    Google Scholar 

  8. H. Neuber:Theory of Notch Stresses, p. 56, J. W. Edwards Co., Ann Arbor, Mich., 1946.

    Google Scholar 

  9. A. S. Tetelman and A. J. McEvily, Jr.,Fracture of Structural Materials, p. 64, John Wiley, 1967.

  10. D. S. Dugdale:J. Mech. Phys. Sol, 1960, vol. 8, pp. 100–04.

    Article  Google Scholar 

  11. S. Weissmann and Z. Kaiman:Phil. Mag., 1967, vol. 15, pp. 539–47.

    Article  CAS  Google Scholar 

  12. G. T. Hahn and A. R. Rosenfield:Proc. 3d Intern. Cong, on Fracture, Munich, April, 1973. Plenary Lecture 111-211, pp. 1–20, Verein Deutscher Eisenhütten- leute, Düsseldorf.

    Google Scholar 

  13. T. Suzuki and H. Kojima:ActaMet., 1966, vol. 14, pp. 913–24.

    CAS  Google Scholar 

  14. P. B. Hirsch:Prog. Met. Phys., 1956, vol. 6, p. 282.

    Article  Google Scholar 

  15. S. Finke:Z. Metallkde., 1972, vol. 72, pp. 281–89.

    Google Scholar 

  16. D. C. Drucker and J. R. Rice:Eng. Fracture Mech., 1970, vol. 4, pp. 577–602.

    Article  Google Scholar 

  17. H. T. Corten:Proc. 3rd. Intern. Cong, on Fracture, Munich, April, 1973. Part I, Plenary Lecture 11-121, pp. 1–21, Verein Deutscher Eisenhüttenleute, Düsseldorf.

    Google Scholar 

  18. W. Scoble, Jr. and S. Weissmann: inCrystal Lattice Defects, Gordon and Breach, 1973, vol. 4, pp. 123-36.

  19. M. N. Bassim and D. Kuhlmann-Wilsdorf:Phys. Status. Solidi., 1973, vol. al5,pp. 725–34 ; ibid., 1973, vol. al6, pp. 241-51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based upon a thesis submitted by Y. TSUNEKAWA in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Rutgers University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsunekawa, Y., Weissmann, S. Importance of microplasticity in the fracture of silicon. Metall Trans 5, 1585–1593 (1974). https://doi.org/10.1007/BF02646330

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646330

Keywords

Navigation