Journal of Phase Equilibria

, Volume 16, Issue 1, pp 10–15 | Cite as

Excess thermodynamic properties of dilute solutions

  • Toshihiro Tanaka
  • Nev A. Gokcen


Appropriate equations for representation of excess thermodynamic properties of moderately dilute solutions are presented with discussions. Illustrative examples are given, based largely on the experimental results of Morita et al. It is shown that the statistical thermodynamic treatments with enumeration of configurations, and with the free volume concept yield the best existing equations. Future developments will depend on realistic enumeration of configurations with models having attractive and repulsive forces. The lack of adequate data on the physical properties, such as the excess volume, electronic configuration, etc., have discouraged further realistic developments.


Mole Fraction Activity Coefficient Infinite Dilution Excess Entropy High Order Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 52Wag:.
    C. Wagner, “Thermodynamics of Alloys”, Addison-Wesley Press, Cambridge MA (1952).Google Scholar
  2. 67Lup:.
    C.H.P. Lupis and J.F. Elliott, Acta Metall, 15, 265–276 (1967).CrossRefGoogle Scholar
  3. 71Gok:.
    N.A. Gokcen and E.T. Chang, J. Chem. Phys., 55, 2279–2289 (1971).CrossRefADSGoogle Scholar
  4. 74Ric:.
    F.D. Richardson, “Physical Chemistry of Melts in Metallurgy”, Vol.l, Academic Press London, 165 (1974).Google Scholar
  5. 75Gok:.
    N.A. Gokcen, “Thermodynamics”, Chapter 11, Techscience Inc., (1975).Google Scholar
  6. 81Kub:.
    O. Kubachewski, High Temp. High Pressures, 14, 435–441 (1981).Google Scholar
  7. 82Gok:.
    N.A. Gokcen, High Temp. Science, 15, 293–300 (1982).Google Scholar
  8. 86Gok:.
    N.A. Gokcen, “Statistical Thermodynamics of Alloys”, Plenum Press, New York, Chapter 1 (1986)Google Scholar
  9. 88Cha:.
    YA. Chang, K. Fitzner and M.-X. Zhang, Progress in Mater. Science 32 (2–3) 97–259 (1988).CrossRefGoogle Scholar
  10. 88deB:.
    E.R. deBoer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen, “Cohesion in Metals”, North Holland (1988).Google Scholar
  11. 88Ste:.
    “Steelmaking Data Sourcebook”, Japan Society for the Promotion of Science, 19th Comm. on Steelmaking, Gordon & Breach Science Publishers (1988).Google Scholar
  12. 90Tanl:.
    T.Tanaka, N.A. Gokcen, and Z. Morita, Z. Metallkde, 81, 49–54 (1990).Google Scholar
  13. 90Tan2:.
    T. Tanaka, N.A. Gokcen, and Z. Morita, Z. Metallkde, 81, 349–353 (1990).Google Scholar
  14. 91Tan:.
    T. Tanaka, N.A. Gokcen, D. Neuschuetz, P.J. Spencer and Z. Morita Steel Research 62,385–389(1991).Google Scholar
  15. 93Gok:.
    N.A. Gokcen, T. Tanaka and Z. Morita, J. Chim. Phys, 90, 233–248 (1993).Google Scholar
  16. 93Tanl:.
    T. Tanaka, N.A. Gokcen, Z. Morita and T. Iida, Z. Metallkde, 84, 192–200 (1993).Google Scholar
  17. 93Tan2:.
    T. Tanaka, N.A. Gokcen, P.J. Spencer, Z. Morita and T. Iida, Z. Metallkde 84 100–105 (1993).Google Scholar
  18. 94Gokl:.
    N.A. Gokcen, to appear in J. Phase Equil, 15 (1994).Google Scholar
  19. 94Gok2:.
    N.A. Gokcen, Steel Research, 65 (4), 125–127 (1994).Google Scholar

Copyright information

© ASM International 1995

Authors and Affiliations

  • Toshihiro Tanaka
    • 1
  • Nev A. Gokcen
    • 2
  1. 1.Osaka UniversityOsakaJapan
  2. 2.East Thornton LakeAlbanyUSA

Personalised recommendations