Advertisement

Metallurgical Transactions A

, Volume 18, Issue 10, pp 1721–1733 | Cite as

The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning

  • Shu-Zu Lu
  • A. Hellawell
Mechanical Behavior

Abstract

Modification of silicon by sodium in aluminum silicon eutectic alloy has been examined in detail by optical, SEM, and TEM methods. The aluminum phase is not significantly affected but the silicon becomes very heavily twinned. Modification by quenching does not involve an increase in twin density. Consideration of the atomic positions which attend the formation of growth twins on {111} planes suggests that adsorbed impurity atoms of suitable size, on the solid-liquid interface, could be responsible for changing the {111} stacking sequence, so promoting ‘impurity induced twinning’; the optimum hard sphere radius ratio would be ≈ 1.65. It is proposed that this condition could be the first and principal requirement for a modifying agent to be effective in this system. It is shown further, that other reputed modifiers do also induce a higher twin density. Variations in the efficiency of individual elements to promote such an effect are discussed in terms of other relevant factors which include melting points and vapor pressures, the free energies of formation of compounds — notably of oxides, and the forms of alloy phase diagrams.

Keywords

Metallurgical Transaction Strontium Hard Sphere Atomic Radius Growth Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Hunt and K.A. Jackson:Trans. TMS-AIME, 1966, vol. 236, pp. 843–52.Google Scholar
  2. 2.
    R. Elliott:Eutectic Solidification Processing, Butterworths, London, 1983.Google Scholar
  3. 3.
    A. Pacz: U.S. patent 1387900, 1920.Google Scholar
  4. 4.
    A. Hellawell:Progr. Materials Science, 1970, vol. 15, p. 1.Google Scholar
  5. 5.
    G.K. Sigworth:Trans. A.F.S., 1983, vol. 91, pp. 7–16.Google Scholar
  6. 6.
    M.D. Day and A. Hellawell:Proc. Roy. Soc. A, 1968, vol. A305, pp. 473–91.CrossRefGoogle Scholar
  7. 7.
    M.D. Hanna, S.Z. Lu, and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 459–69.Google Scholar
  8. 8.
    S.Z. Lu and A. Hellawell:J. Crystal Growth, 1985, vol. 73, pp. 316–28.CrossRefGoogle Scholar
  9. 9.
    M. Shamsuzzoha and L. M. Hogan:J. Crystal Growth, 1985, vol. 72, pp. 735–37.CrossRefGoogle Scholar
  10. 10.
    V. de L. Davies and J. M. West:J. Inst. Metals, 1963-1964, vol. 92, pp. 175–80.Google Scholar
  11. 11.
    R.J. Brisley and D. J. Fray:Metall. Trans. B, 1983, vol. 14B, pp. 435–40.Google Scholar
  12. 12.
    S.P. Clough, M. B. Hintz, S.Z. Lu, and A. Hellawell: Michigan Technological University, unpublished work, 1986.Google Scholar
  13. 13.
    S.Z. Lu and A. Hellawell:Aluminum Alloys — Their Physical and Mechanical Properties, EMAS, London, 1986, vol. I, pp. 81–94.Google Scholar
  14. 14.
    B. Tolui and A. Hellawell:Acta Metall., 1976, vol. 24, pp. 565–73.CrossRefGoogle Scholar
  15. 15.
    S.C. Flood and I.D. Hunt:Metal. Science, 1981, vol. 15, pp. 287–94.CrossRefGoogle Scholar
  16. 16.
    R.S. Wagner:Acta Metall., 1960, vol. 8, pp. 57–60.CrossRefGoogle Scholar
  17. 17.
    D.R. Hamilton and R.G. Scidenstricker:J.Appl. Phys., 1960, vol. 31, pp. 1165–68.CrossRefGoogle Scholar
  18. 18.
    H.A.H. Steen and A. Hellawell:Acta Metall., 1975, vol. 23, pp. 529–35.CrossRefGoogle Scholar
  19. ]19.
    K.A. Jackson:Proc. 4th Int. Conf. on Crystal Growth, North Holland, Amsterdam, 1974, p. 173.Google Scholar
  20. 20.
    S.Z. Lu: Ph.D. Thesis, Michigan Technological University, Houghton, MI, 1986.Google Scholar
  21. 21.
    M. D. Hanna and A. Hellawell:Proc. Mat. Res. Soc., 1981, vol. 19, pp. 411–16.Google Scholar
  22. 22.
    M. Straumanis and N. Brakss:Z. Phys. Chem. B, 1937, vol. 38, pp. 140–55.Google Scholar
  23. 23.
    A.I. McLeod, L. M. Hogan, C.M. Adam, and D.C. Jenkinson:J. Crystal Growth, 1973, vol. 19, pp. 301–309.CrossRefGoogle Scholar
  24. 24.
    I.G. Davies and A. Hellawell:Phil. Mag., 1969, vol. 19, pp. 1285–97.CrossRefGoogle Scholar
  25. 25.
    K. Kobayashi, P.M. Shingu, and R. Ozaki:The Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 101–05.Google Scholar
  26. 26.
    C.B. Kim and R. W. Heine:J. Inst. Metals, 1963-1964, vol. 92, pp. 367–76.Google Scholar
  27. 27.
    Q. Zhang, S. Liu, and J. Hu:Acta Met. Sinica, 1984, vol. 20 (2), pp. 138–44.Google Scholar
  28. 28.
    Z. Y. Zhou, S. Y. Zhau, Z. R. Zhom, and Z. H. Yang:Giesserei-Prax., 1983, vol. 4, pp. 49–56.Google Scholar
  29. 29.
    Q. Y. Zhang, C. G. Zheng, and W. S. Han:Acta Met. Sinica, 1981, vol. 17 (4), pp. 130–32.Google Scholar
  30. 30.
    N. Cabrera and D. A. Vermilyea:Growth and Perfection of Crystals, Wiley, New York, NY, 1958, p. 394.Google Scholar
  31. 31.
    M.D. Hanna and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 595–97.Google Scholar
  32. 32.
    O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, Pergamon Press, Oxford, 1979.Google Scholar
  33. 33.
    R. R. Hultgren:Selected Values of Thermodynamical Properties of Metals and Alloys, ASM, 1973.Google Scholar
  34. 34.
    P. Villars and L. D. Calvert:Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, 1985, vols. II and III.Google Scholar
  35. 35.
    W. Hume-Rothery and G. V. Raynor:The Structure of Metals and Alloys, The Institute of Metals, 1962, Part III, p. 65.Google Scholar
  36. 36.
    M. Shamsuzzoha and L. M. Hogan:J. Crystal Growth, 1986, vol. 76, pp. 429–39.CrossRefGoogle Scholar
  37. 37.
    M. Shamsuzzoha and L. M. Hogan:Phil. Mag., 1986, vol. 54, pp. 459–68.CrossRefGoogle Scholar
  38. 38.
    L. M. Hogan and H. Song:Acta Metall., 1987, vol. 35, pp. 677–80.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1987

Authors and Affiliations

  • Shu-Zu Lu
    • 1
  • A. Hellawell
    • 2
  1. 1.Department of Foundry TechnologyBeijing University of Iron and Steel TechnologyBeijingPeople’s Republic of China
  2. 2.Department of Metallurgical EngineeringMichigan Technological UniversityHoughton

Personalised recommendations