Skip to main content
Log in

cellular microstructure of chill block melt spun Ni-Mo alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt Pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the mid ribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient. Microsegregation across cells and its variation with distance from the quench surface and alloy composition have been examined and compared with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Vincent, J.G. Herbertson, and H.A. Davies: inRapidly Quenched Metals IV, T. Masumoto and K. Suzuki, eds., Japan Insti- tute of Metals, Sendai, Japan, 1982, vol. 1, pp. 77–80.

    Google Scholar 

  2. H.H. Liebermann:Mater. Sci. Eng., 1980, vol. 43, pp. 203–10.

    Article  CAS  Google Scholar 

  3. J.H. Vincent, J.G. Herbertson, and H.A. Davies:J. Mater. Sci., 1983, vol. 2, pp. 88–90.

    Google Scholar 

  4. S. Kavesh: inMetallic Glasses, J.J. Gilrnan and H.J. Leamy, eds., ASM, Metals Park, OH, 1976, pp. 36–73.

    Google Scholar 

  5. V. Laxmanan: inRapidly Solidified Metastable Materials, B. H. Kear and B.C. Giessen, eds., North-Holland, New York, NY, 1984, pp. 21–27.

    Google Scholar 

  6. S. C. Huang, R. P. Laforce, A. M. Ritter, and R. P. Goehner:Metall. Trans. A, 1985, vol. 16, pp. 1773–79.

    Google Scholar 

  7. H. Jones:Mater. Sci. Eng., 1984, vol. 65, pp. 145–56.

    Article  CAS  Google Scholar 

  8. C. Hayzelden, J.J. Rayment, and B. Cantor:Acta Metall., 1983, vol. 31, pp. 379–86.

    Article  CAS  Google Scholar 

  9. P. G. Boswell and G. A. Chadwick:Scripta Metall., 1977, vol. 11, pp. 459–65.

    Article  CAS  Google Scholar 

  10. L.J. Masur and M.C. Flemings: inRapidly Quenched Metals IV, T. Masumoto and K. Suzuki, eds., The Japan Institute of Metals, Sendai, Japan, 1982, pp. 1557–60.

    Google Scholar 

  11. L. Katgerman:Scripta Metall., 1983, vol. 17, pp. 537–40.

    Article  CAS  Google Scholar 

  12. R. Trivedi:J. Crystal Growth, 1985, vol. 73, pp. 289–303.

    Article  CAS  Google Scholar 

  13. W. W. Mullins and R. F. Sekerka:J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Article  Google Scholar 

  14. J. W. Cahn, S. R. Coriell, and W.J. Boettinger:in Laser and Electron Beam Processing of Materials, C.W. White and P.S. Peercy, eds., Academic Press, New York, NY, 1980, pp. 89–103.

    Google Scholar 

  15. W. E. Brower, Jr., R. Strachan, and M.C. Flemings:Cast Mer. Res. J., 1970, vol. 6, pp. 176–80.

    Google Scholar 

  16. A. Munitz:Metall. Trans. B, 1985, vol. 16B, pp. 149–61.

    CAS  Google Scholar 

  17. J. D. Hunt:Solidification and Casting of Metals, The Metals Society, London, 1979, pp. 3–9.

    Google Scholar 

  18. H. Esaka and W. Kurz:J. Crystal Growth, 1985, vol. 72, pp. 578–84.

    Article  CAS  Google Scholar 

  19. R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 977–82.

    CAS  Google Scholar 

  20. Y. Miyata.T. Suzuki, and J. I. Uno:Metall. Trans. A, 1985, vol. 16A, pp. 1799–1805.

    CAS  Google Scholar 

  21. T. F. Bower, H. D. Brody, and M. C. Flemings:Trans. AIME, 1966, vol. 236, pp. 624–34.

    CAS  Google Scholar 

  22. M.H. Burden and J.D. Hunt:J. Crystal Growth, 1974, vol. 22, pp. 109–16.

    Article  CAS  Google Scholar 

  23. J.S. Kirkaldy:Scripta Metall., 1980, vol. 14, pp. 739–44.

    Article  Google Scholar 

  24. W. Kurz and D.J. Fisher:Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  25. R. Trivedi:J. Crystal Growth, 1980, vol. 49, pp. 219–32.

    Article  CAS  Google Scholar 

  26. V. Laxmanan:Acta Metall., 1985, vol. 33, pp. 1037–49.

    Article  CAS  Google Scholar 

  27. I. Jin and G. R. Purdy:J. Crystal Growth, 1974, vol. 23, pp. 29–44.

    Article  CAS  Google Scholar 

  28. S.N. Tewari and V. Laxmanan:Acta Metall., 1987, vol. 35, pp. 175–83.

    Article  CAS  Google Scholar 

  29. J. Narayan:J. Crystal Growth, 1982, vol. 59, pp. 583–98.

    Article  CAS  Google Scholar 

  30. W. J. Boettinger, D. Shechtman, R.J. Schaefer, and F. S. Biancaniello:Metall. Trans. A, 1984, vol. 15A, pp. 55–66.

    CAS  Google Scholar 

  31. F. Fayard, F. Duflos, and A. Lasalmonie: inRapidly Quenched Metals, S. Steeb and H. Warlimont, eds., North-Holland, New York, NY, 1985, vol. 1, pp. 811–14.

    Google Scholar 

  32. B. Chalmers:Principles of Solidification, John Wiley and Sons, New York, NY, 1964.

    Google Scholar 

  33. M.E. Glicksman:Mater. Sci. Eng., 1984, vol. 65, pp. 45–55.

    Article  CAS  Google Scholar 

  34. T.Z. Kattamis:Z. Metalkd., 1970, vol. 61, pp. 856–60.

    CAS  Google Scholar 

  35. M. Solari and H. Biloni:J. Crystal Growth, 1980, vol. 49, pp. 451–57.

    Article  CAS  Google Scholar 

  36. H.A. Palacio, M. Solari, and H. Biloni:J. Crystal Growth, 1985, vol. 73, pp. 369–78.

    Article  CAS  Google Scholar 

  37. H.D. Brody and M.C. Flemings:Trans. AIME, 1966, vol. 236, pp. 615–23.

    CAS  Google Scholar 

  38. Metals Handbook, 8th ed., ASM, Metals Park, OH, 1973, vol. 8, p. 319.

  39. R. W. Jech, T. J. Moore, T. K. Glasgow, and N. W. Orth:J. of Metals, 1984, vol. 36 (4), pp. 41–45.

    CAS  Google Scholar 

  40. N. Jayaraman and S.N. Tewari:Metall. Trans. A, 1986, vol. 17A, pp. 2291–94.

    CAS  Google Scholar 

  41. M.G. Chu: “Solidification of Highly Undercooled Alloy Droplets,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.

    Google Scholar 

  42. T. W. Caldwell, A. J. Campagna, M. C. Flemings, and R. Mehrabian:Metall. Trans. B, 1977, vol. 8B, pp. 261–70.

    CAS  Google Scholar 

  43. J. Lipton, A. Garcia, and W. Heinemann:Arch. Eisenhuettenwes., 1982, vol. 53, pp. 469–73.

    CAS  Google Scholar 

  44. Thermophysical Properties of Matter, Y. S. Touloukian, R. W. Powell, C.V. Ho. and P. G. Klemens, eds., IFI/Plenum, New York, NY, 1970, vol. 1, pp. 242–44.

  45. Nickel Alloy Steels Databook, 3rd ed., International Nickel Co., New York, NY. 1965, p. 19.

  46. M.J. Aziz:J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  CAS  Google Scholar 

  47. W. Kurz, B. Giovanola, and R. Trivedi:Acta Metall, 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  48. M. C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974, p. 82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, S.N., Glasgow, T.K. cellular microstructure of chill block melt spun Ni-Mo alloys. Metall Trans A 18, 1663–1678 (1987). https://doi.org/10.1007/BF02646150

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646150

Keywords

Navigation