Skip to main content
Log in

role of crack tip shielding in the initiation and growth of long and small fatigue cracks in composite microstructures

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The role of crack tip shielding in retarding the initiation and growth of fatigue cracks has been examined in metallic composite microstructures (consisting of hard and soft phases), with the objective of achieving maximum resistance to fatigue. Specifically, duplex ferritic-martensitic structures have been developed in AISI 1008 and 1015 mild steels to promote shielding without loss in strength. The shielding is developed primarily from crack deflection and resultant crack closure, such that unusually high long crack propagation resistance is obtained. It is found that the fatigue threshold ΔK TH in AISI 1008 can be increased by more than 100 Pct to over 20 MPa Vm, without sacrifice in strength, representing the highest ambient temperature threshold reported for a metallic alloy to date. Similar but smaller increases are found in AISI 1015. The effect of the dual-phase microstructures on crack initiation and small crack (10 to 1000 ώm) growth, however, is markedly different, characteristic of behavior influenced by the mutual comPctition of intrinsic and extrinsic (shielding) “toughening” mechanisms. Accordingly, the composite microstructures which appear to show the highest resistance to the growth of long cracks, show the lowest resistance to crack initiation and small crack growth. In general, dual-phase steels are found to display remarkable fatigue properties, with fatigue limits as high as 58 Pct of the tensile strengths and fatigue thresholds in the range of 13 to 20 MPaVm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. O. Ritchie and W. Yu: inSmall Fatigue Cracks, R. O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  2. R.O. Ritchie, R. H. Dauskardt, and R.M. Cannon: Lawrence Berkeley Laboratory Report No. LBL-20656, University of California, Berkeley, C. A, Dec. 1986.

    Google Scholar 

  3. R.M. McMeeking and A. G. Evans:J. Amer. Cer. Soc, 1982, vol. 65, pp. 242–46.

    Article  Google Scholar 

  4. A. G. Evans and K.T. Faber:J. Amer. Cer. Soc, 1984, vol. 67, pp. 255–60.

    Article  Google Scholar 

  5. D. B. Marshall, B.N. Cox, and A. G. Evans:Acta Metall., 1985, vol. 33, pp. 2013–21.

    Article  Google Scholar 

  6. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  7. S. Suresh and R.O. Ritchie: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 227–61.

    Google Scholar 

  8. R.O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Matls. Tech., Trans. ASME, Ser. H, 1980, vol. 102, pp. 293–99.

    CAS  Google Scholar 

  9. A. T. Stewart:Eng. Fract. Mech., 1980, vol. 13, pp. 463–78.

    Article  CAS  Google Scholar 

  10. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, pp. 1435–43.

    Google Scholar 

  11. N. Walker and C.J. Beevers:Fat. Eng. Mat. Struct., 1979, vol. 1, pp. 135–48.

    Article  CAS  Google Scholar 

  12. K. Minakawa and A.J. McEvily:Scripta Metall.. 1981, vol.6, pp. 633–36.

    Google Scholar 

  13. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  14. J.-L. Tzou, C.H. Hsueh, A.G. Evans, and R.O. Ritchie:Acta Metall.. 1985, vol. 33, pp. 117–27.

    Article  CAS  Google Scholar 

  15. W. Eiber:Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  16. W. F. Deans and C. E. Richards:J. Test. Eval., 1979, vol. 7, p. 147.

    Article  CAS  Google Scholar 

  17. J.C. Newman, Jr. and I.S. Raju:Eng. Fract. Mech., 1981, vol. 15, pp. 185–92.

    Article  Google Scholar 

  18. R. O. Ritchie:Int. Metals Reviews, 1979, vol. 20, pp. 205–30.

    Google Scholar 

  19. H. Suzuki and A.J. McEvily:Metall. Trans. A, 1979, vol. 10A, p. 475.

    CAS  Google Scholar 

  20. K. Minakawa, Y. Matsuo, and A. J. McEvily:Metall. Trans. A, 1982, vol. 13A, p. 439.

    CAS  Google Scholar 

  21. J. A. Wasynczuk, R.O. Ritchie, and G. Thomas:Mat. Sci. Engr., 1984, vol. 62, pp. 79–92.

    Article  CAS  Google Scholar 

  22. V. B. Dutta, S. Suresh, and R.O. Ritchie:Metall. Trans. A, 1984, vol. 15A, pp. 1193–207.

    CAS  Google Scholar 

  23. J.-L. Tzou and R.O. Ritchie:Scripta Metall., 1985, vol. 19, pp. 751–55.

    Article  CAS  Google Scholar 

  24. M.R. Mitchell: inFatigue and Microstructure, ASM INTERNATIONAL, Metals Park, OH, 1979, pp. 385–466.

    Google Scholar 

  25. C. F. Shih:J. Mech. Phys. Solids, 1981, vol. 21, p. 305.

    Article  Google Scholar 

  26. T. Kunio and K. Yamata: inFatigue Mechanisms, ASTM STP 675, J. T. Fong, ed., American Society for Testing and Materials, Philadel- phia, PA, 1979, pp. 342–61.

    Google Scholar 

  27. T. Konio, M. Shimizu, K. Yamata, and H. Nakabayashi: inFatigue Thresholds, J. Bäcklund, A. F. Blom, and C. J. Beevers, eds., EMAS Ltd., Warley, U.K., 1982, vol. 1, pp. 409–22.

    Google Scholar 

  28. J. Lankford:Fat. Fract. Eng. Mat. Struct., 1985, vol. 8, pp. 161–75.

    Article  Google Scholar 

  29. S. Suresh and R.O. Ritchie:Int. Metals Reviews, 1984, vol. 29, pp. 445–76.

    Google Scholar 

  30. A. Pineau: inSmall Fatigue Cracks, R. O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 191–212.

    Google Scholar 

  31. L. Wagner, J.K. Gregory, A. Gysler, and G. Liitjering: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 117–28.

    Google Scholar 

  32. K. T. Venkateswara Rao, W. Yu, and R. O. Ritchie:Scripta Metall., 1986, vol. 20, pp. 1459–65.

    Article  CAS  Google Scholar 

  33. R.O. Ritchie and J. Lankford:Mater. Sci. Eng., 1986, vol. 84, pp. 11–16.

    Article  Google Scholar 

  34. J. Lankford and D. L. Davidson: inSmall Fatigue Cracks, R. O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 51–72.

    Google Scholar 

  35. R. Steinbrech, R. Knehans, and W. Schaarwachter:J. Mat. Sci., 1983, vol. 18, pp. 265–70.

    Article  Google Scholar 

  36. J.M. Larsen, T. Nicholas, A. W. Thompson, and J. C. Williams: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS- AIME, Warrendale, PA, 1986, pp. 499–512.

    Google Scholar 

  37. J. Pctit, S. Suresh, A. K. Vasudévan, and R. C. Malcolm: inAluminium-Lithium Alloys III, C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, London, U.K., 1986, pp. 257–62.

    Google Scholar 

  38. K. V, Jata and E. A. Starke, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

  39. W. Yu and R. O. Ritchie:J. Eng. Maus. Tech., Trans. ASME, Ser. H, 1987, vol. 109, pp. 81–85.

    Article  CAS  Google Scholar 

  40. K. T. Venkateswara Rao, W. Yu, and R. O. Ritchie:Metall. Trans. A, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, is with National Semiconductor Corporation, Santa Clara, CA 95051.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, J.k., Tzou, J.L. & Ritchie, R.O. role of crack tip shielding in the initiation and growth of long and small fatigue cracks in composite microstructures. Metall Trans A 18, 1613–1627 (1987). https://doi.org/10.1007/BF02646145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646145

Keywords

Navigation