Skip to main content
Log in

Interpretation of the Effects of High Austenitizing Temperature on Toughness Behavior in a Low Alloy, High Strength Steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An experimental investigation into the effects of high temperature austenitizing treatment (h.t.a.) on the microstructure and the mechanical properties, and micromechanisms of fracture in a variety of test conditions has been carried out on a Ni-Cr high strength steel. H.t.a. increased the fracture toughness, but decreased the tensile ductilities and notch toughness of this steel with a slight reduction in strength in the condition of strain-controlled fracture mode. However, the fracture toughness and notch toughness of steel were simultaneously improved by h.t.a. in the condition of stress-controlled fracture mode. This behavior of ductility and notch toughness is because the micro structural variations arising from h.t.a. have different roles in different fracture modes. It appears that the general effect of microstructural changes is beneficial to stress-controlled fracture, but the reverse is true to straincontrolled fracture. The fracture toughness behavior was greatly affected by the change in characteristic distance with austenitizing temperature, but the characteristic distance obtained from the best fitting of experimental results does not have clear physical meaning. It is observed that the application of macroscopic fracture stress or strain in analyzing local failure behavior ahead of the crack tip can be justified if the characteristic distance is consistent with the microstructural parameters related to the fracture process. The improvement in fracture toughness for stress controlled fracture mainly results from the large characteristic distance; whereas in the case of strain controlled fracture, this is caused by the much higher local fracture strain ahead of the crack tip of h.t.a. structure compared to that observed in structures produced by conventional austenitizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, R. D. Godsby, and W.E. Wood:Nature Phys. Science, 1972, vol. 236, pp. 108–09.

    CAS  Google Scholar 

  2. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Metall. Trans., 1974, vol. 5, pp. 1663–70.

    CAS  Google Scholar 

  3. W.E. Wood:Engr. Fract. Mech., 1975, vol. 7, pp. 219–34.

    Article  CAS  Google Scholar 

  4. R. O. Ritchie, B. Francis, and W. L. Server:Metall. Trans. A, 1976, vol. 7A, pp. 831–38.

    CAS  Google Scholar 

  5. R.O. Ritchie and R. M. Horn:Metall. Trans. A, 1978, vol. 9A, pp. 331–41.

    CAS  Google Scholar 

  6. H. Johanson, T. Bernling, M. Hakulien, and R. Sandstrom:Scan- dinavian J. of Metall., 1978, vol. 7, pp. 244–51.

    Google Scholar 

  7. R. Roberti, G. Silva, B. De Benedetti, and D. Firrao:La Metall. Ital., 1978, vol. 70, pp. 449–55.

    CAS  Google Scholar 

  8. K.P. Datta:Mater. Scien. Engr., 1981, vol. 51, pp. 241–52.

    Article  CAS  Google Scholar 

  9. D. Firrao, J. A. Begley, G. Silva, R. Roberti, and B. De Benedetti:Metall. Trans. A, 1982, vol. 13A, pp. 1003–13.

    CAS  Google Scholar 

  10. J. L. Youngblood and M. Raghavan:Metall. Trans. A, 1977, vol. 8A, pp. 1439–48.

    CAS  Google Scholar 

  11. D.S. McDarmaid:Metals Techn., 1978, vol. 5, pp. 7–16.

    CAS  Google Scholar 

  12. D.S. McDarmaid:Metals Techn., 1980, vol. 7, pp. 372–77.

    Google Scholar 

  13. J. A. McMahon and G. Thomas:Proc. 3rd International Conference on Strength of Metals and Alloys, Inst, of Metals, London, 1973, vol. 1, pp. 180–84.

    Google Scholar 

  14. M. F. Carlson, B. V. N. Rao, R. O. Ritchie, and G. Thomas:Proc. 4th International Conference on Strength of Metals and Alloys, Inst, of Metals, Nancy, France, 1976, vol. 5, pp. 509–13.

    Google Scholar 

  15. M. F. Carlson, B. V. N. Rao, and G. Thomas:Metall. Trans. A, 1979, vol. 10A, pp. 1273–84.

    CAS  Google Scholar 

  16. W. G. Ferguson, N. E. Clark, and B. R. Watson:Metals Techn., 1976, vol. 3, pp. 208–09.

    Google Scholar 

  17. R.O. Ritchie and J.F. Knott:Metall. Trans., 1974, vol. 5, pp. 782–85.

    CAS  Google Scholar 

  18. D. Dulieu:Proc. 3rd International Conference on Strength of Metals and Alloys, Inst, of Metals, London, 1973, vol. 1, p. 383.

    Google Scholar 

  19. O.N. Romanov, A.N. Tkach, Ya. N. Gladskii, and Yu. E. Zima:Phys. Chemical Mechanics of Materials (in Russian), 1976, No. 5, pp. 41–44.

  20. G. Thomas:Iron Steel International, 1973, vol. 46, pp. 451–61.

    CAS  Google Scholar 

  21. V. F. Zackay, E. R. Parker, and W. E. Wood:Proc. 3rd International Conference on Strength of Metals and Alloys, Inst, of Metals, London, 1973, vol. 1, p. 175.

    Google Scholar 

  22. G. Y Lai:Mater. Scien. Engr., 1975, vol. 19, pp. 153–56.

    Article  CAS  Google Scholar 

  23. E. R. Parker and V.F. Zackay:Engr. Fract. Mech., 1975, vol. 7, pp. 371–75.

    Article  CAS  Google Scholar 

  24. G. Thomas:Battelle Colloquium on Fundamental Aspects of Structural Alloy Design, R. I. Jaffee and B. A. Wilcox, eds., Plenum Publishing Co., 1977, pp. 331–61.

  25. G. Clark, R.O. Ritchie, and I.F. Knott:Nature Phys. Sei., 1972, vol. 239, p. 104.

    CAS  Google Scholar 

  26. O. N. Romanov and A. N. Tkach:Metallography and Heat Treatment of Metals (in Russian), 1982, No. 5, pp. 7–11.

  27. V. F. Zackay and E. R. Parker: inAlloy and Microstructure Design, J. K. Tien and G. S. Ansell, eds., Academic Press, 1976, pp. 213–50.

  28. E. R. Parker:Metall. Trans. A, 1977, vol. 8A, pp. 1025–42.

    CAS  Google Scholar 

  29. P.A. Clark and G. Thomas:Metall. Trans. A, 1975, vol. 6A, pp. 969–79.

    CAS  Google Scholar 

  30. B.J. Schulz and C.J. McMahon, Jr:Metall. Trans., 1973, vol. 4, pp. 2485–89.

    CAS  Google Scholar 

  31. I.R. Kramer: inEnvironment-Sensitive Mechanical Behaviors, Gordon and Breach, New York, NY, 1965, p. 127.

  32. T. Ogura, A. Makino, and T. Masumoto:Metall. Trans. A, 1984, vol. 15A, pp. 1563–70.

    CAS  Google Scholar 

  33. J. Griffith and D. R. J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  34. D.P. Clausing:Int. J. Fract. Mech., 1970, vol. 6, pp. 71–85.

    Google Scholar 

  35. J.E. Neimark: Trans, of the ASME, Ser. H,Journal of Applied Mechanics, 1968, vol. 35, pp. 111–16.

    Google Scholar 

  36. I.R. Kramer and A. Kumar:Metall. Trans., 1972, vol. 3, pp. 1223–27.

    CAS  Google Scholar 

  37. B.J. Brinndley:Acta Metall., 1968, vol. 16, pp. 587–95.

    Article  Google Scholar 

  38. R. H. Vanstone and T. B. Cox; inFractography-MicroscopicCracking Process, C. D. Beachem and W. R. Warke, eds., ASTM STP 600, 1975, pp. 5–29.

  39. R. Garber, I. M Bernstein, and A. W. Thompson:Metall. Trans. A, 1981, vol. 12A, pp. 225–34.

    Google Scholar 

  40. O. A. Onyewuenyi and J. P. Hirth:Metall. Trans. A, 1982, vol. 13A, pp. 2209–18.

    Google Scholar 

  41. M. Sarikaya, A. K. Jhingan, and G. Thomas:Metall. Trans. A, 1983, vol. 14A, pp. 1121–33.

    CAS  Google Scholar 

  42. J. J. Jonas and B. Baudelet:Acta Metall., 1977, vol. 25, pp. 43–50.

    Article  Google Scholar 

  43. D. A. Curry and J.F. Knott:Met. Sci., 1979, vol. 13, pp. 341–45.

    CAS  Google Scholar 

  44. S.D. Antolovich and B. Singh:Metall. Trans., 1971, vol. 2, pp. 2135–41.

    CAS  Google Scholar 

  45. B.V. Narasimha Rao and B. Thomas:Metall. Trans. A, 1980, vol. 11A, p. 457, p. 441.

    Google Scholar 

  46. M. Sarikaya, B.G. Steinberg, and G. Thomas:Metall. Trans. A, 1982, vol. 13A, pp. 2227–37.

    Google Scholar 

  47. J.H. Tweed and J.F. Knott:Met. Sci., 1983, vol. 17, pp. 45–54.

    Article  Google Scholar 

  48. F. C. Quigley and E. Deluca: inSolidification Technology, J.J. Burke, M. C. Fleming, and A.E. Gorum, eds., Brook Hill Pub. Company, 1974, p. 339.

  49. S.N. Gybenko:Metals (in Russian), 1983, pp. 103–07.

  50. D. Broek:Eng. Fract. Mech., 1973, vol. 5, pp. 55–66.

    Article  CAS  Google Scholar 

  51. P. Bowen and J. F. Knott:Met. Sci., 1984, vol. 18, pp. 225–35.

    Article  CAS  Google Scholar 

  52. A. Gilbert, G. T. Hahn, C. N. Reid, and B. A. Wilcox:Acta Metall., 1964, vol. 12, pp. 754–55.

    Article  Google Scholar 

  53. S. Ensha and A. Tetelman:Proc. 3rd Int. Conf. on Fracture, Munich, 1973, vol. II, Verein Deutscher Eisenhüttenleute, Düsseldorf, 1973, Paper 1–331.

    Google Scholar 

  54. R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  55. R. O. Ritchie, W. L. Server, and R.A. Wullaert:Metall. Trans. A, 1980, vol. 11A, p. 359.

    Google Scholar 

  56. Wei-Di Cao, Xiao-Ping Lu, Jia-jun Liu, and Ai-De Yang:Mater. Scien. Eng., 1984, vol. 63, pp. 165–87.

    Article  CAS  Google Scholar 

  57. A. C. Mackenzie, J. W. Hancock, and D. K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  58. J. R. Rice and M. A. Johnson: inInelastic Behavior of Solids, M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and I. Jaffee, eds., McGraw-Hill, 1970, pp. 641–72.

  59. R. M. McMeeking:J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, WD., Lu, XP. Interpretation of the Effects of High Austenitizing Temperature on Toughness Behavior in a Low Alloy, High Strength Steel. Metall Trans A 18, 1569–1585 (1987). https://doi.org/10.1007/BF02646141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646141

Keywords

Navigation