Metallurgical Transactions A

, Volume 17, Issue 12, pp 2187–2198 | Cite as

Precipitation and ostwald ripening in dilute AI Base-Zr-V alloys

  • M. S. Zedalis
  • M. E. Fine
Transport Phenomena


The coarsening rates of both cubic and tetragonal Al3Zr precipitates in Al were measured. The tetragonal Al3Zr coarsened 16 times faster than the cubic modification in keeping with the fact that the latter is coherent and coplanar with the matrix while the former forms a semicoherent interface with the matrix giving a larger interfacial energy. Partial substitution of V for Zr reduced the precipitate-matrix mismatch for both phases and slowed both coarsening rates as well as retarded the cubic to tetragonal transformation. Reducing strain and interfacial energy no doubt is the origin of this effect. Since the cubic particles are spherical, their volume fraction is small, and the coherency strains are small, this would appear to be an ideal system for testing the Lifshitz-Slyozov-Wagner theory of diffusion controlled Ostwald ripening. While the theory seems to hold, the calculated diffusivity of Zr in Al is much higher than the value reported in the literature. Because of the low coarsening rates of the dispersed particles, the Al-Zr-V system shows promise as the basis for a high temperature Al alloy.


Metallurgical Transaction Interfacial Energy Isothermal Aging Al3Zr Average Particle Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Lifshitz and V. V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, p. 35.CrossRefGoogle Scholar
  2. 2.
    C. Wagner:Z. Elektrochem., 1961, vol. 65, p. 581.Google Scholar
  3. 3.
    P. W. Voorhees and M. E. Glicksman:Metall. Trans. A, 1984, vol. 15A, p. 1081.Google Scholar
  4. 4.
    A. D. Brailsford and P. Wynblatt:Acta Metall., 1979, vol. 27, p. 489.CrossRefGoogle Scholar
  5. 5.
    M. E. Fine:Metall. Trans. A, 1975, vol. 6A, p. 625.Google Scholar
  6. 6.
    G. Brauer:Z. anorg. ally. Chem., 1939, vol. 242, p. 1.CrossRefGoogle Scholar
  7. 7.
    F. J. J. van Loo and G. D. Rieck:Acta Metall., 1973, vol. 21, p. 61.CrossRefGoogle Scholar
  8. 8.
    C. M. Adam: inRapidly Solidified Amorphous and Crystalline Alloys, B. H. Kear, B. C. Giessen, and M. Cohen, eds., Elsevier Science Pub. Co., Inc., 1982, pp. 411-22.Google Scholar
  9. 9.
    E. Nes:Acta Metall., 1972, vol. 20, p. 499.CrossRefGoogle Scholar
  10. 10.
    S. Tsunekawa and M. E. Fine:Scr. Metall., 1982, vol. 16, p. 391.CrossRefGoogle Scholar
  11. 11.
    M. Zedalis and M.E. Fine:Scr. Metall., 1983, vol. 17, p. 1247.CrossRefGoogle Scholar
  12. 12.
    D. J. McPherson and M. Hansen:Trans. ASM, 1954, vol. 46, p. 354.Google Scholar
  13. 13.
    A. Roth:Z. Metallkunde, 1940, vol. 32, p. 356.Google Scholar
  14. 14.
    P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whalen: inElectron Microscopy of Thin Crystals, Robert E. Krieger Pub. Co., Inc., New York, NY, 1977, pp. 124–28.Google Scholar
  15. 15.
    J. W. Edington: inPractical Electron Microscopy in Materials Science, Von Nostrand Reinhold Co., New York, NY, 1976, pp. 83–84.Google Scholar
  16. 16.
    D. J. H. Cockayne, I. L. F. Ray, and M. J. Whelan:Phil. Mag., 1969, vol. 20, p. 1265.Google Scholar
  17. 17.
    A. J. Ardell and R. B. Nicholson:J. Phys. Chem. Solids, 1966, vol. 27, p. 1793.CrossRefGoogle Scholar
  18. 18.
    L. A. Willey: Alcoa Research Labs, 1957, cited inAluminum, 1967, vol. I.Google Scholar
  19. 19.
    N. F. M. Henry and K. Lonsdale: inInternational Tables for X-ray Crystallography, 1952, vol. 1, pp. 79–90.Google Scholar
  20. 20.
    E. Nes and N. Ryum:Scr. Metall., 1971, vol. 5, p. 987.CrossRefGoogle Scholar
  21. 21.
    N. Ryum:Acta Metall., 1969, vol. 17, p. 269.CrossRefGoogle Scholar
  22. 22.
    O. Izumi and D. Oelschlagel:Scr. Metall., 1969, vol. 3, p. 619.CrossRefGoogle Scholar
  23. 23.
    M. Sundberg, R. Sundberg, and B. Jacobson:Jernkontoret Ann., 1971, vol. 155, p. 1.Google Scholar
  24. 24.
    E. Nes and H. Billdal:Acta Metall., 1977, vol. 25, p. 1031.CrossRefGoogle Scholar
  25. 25.
    R. M. Fisher and M. J. Marcinkowski:Phil. Mag., 1960, Ser. 8, vol. 8, p. 1385.Google Scholar
  26. 26.
    N. Ryum:J. Mat. Sci., 1975, vol. 10, p. 2075.CrossRefGoogle Scholar
  27. 27.
    P. A. Flinn:Trans. TMS-A1ME, 1960, vol. 218, p. 145.Google Scholar
  28. 28.
    T. Marumo, S. Fujikawa, and Ken-ichi Hirano:J. Japan Inst. Light Metals, 1973, vol. 23, No. 1, p. 17.Google Scholar
  29. 29.
    H. Jones: inRapid Solidification Processing — Principles and Technologies II, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor's Pub. Div., Baton Rouge, LA, 1980, pp. 306–16.Google Scholar
  30. 30.
    S. Hori, S. Saji, and T. Kobayashi: inTechnol. Report, Osaka University, 1978, vol. 28, p. 359.Google Scholar
  31. 31.
    A. J. Ardell:Acta Metall., 1968, vol. 16, p. 511.CrossRefGoogle Scholar
  32. 32.
    P. K. Rastaogi and A. J. Ardell:Acta Metall., 1971, vol. 19, p. 321.CrossRefGoogle Scholar
  33. 33.
    H. Calderon and M. E. Fine:Mat. Sci. Eng., 1984, vol. 63, p. 197.CrossRefGoogle Scholar
  34. 34.
    H. A. Calderon, J. R. Weertman, and M. E. Fine:Scr. Metall., 1984, vol. 18, p. 587.CrossRefGoogle Scholar
  35. 35.
    J. D. Boyd and R. B. Nicholson:Acta Metall., 1971, vol. 19, p. 1379.CrossRefGoogle Scholar
  36. 36.
    P. Merle and F. Fouquet:Acta Metall., 1981, vol. 29, p. 1919.CrossRefGoogle Scholar
  37. 37.
    P. Merle and F. Fouquet:Acta Metall., 1981, vol. 29, p. 1929.CrossRefGoogle Scholar
  38. 38.
    D. Janoff and M. E. Fine:Mat. Sci. Eng., 1984, vol. 64, p. 67.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1986

Authors and Affiliations

  • M. S. Zedalis
    • 1
  • M. E. Fine
    • 2
  1. 1.Allied Chemical CorporationMorristown
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanston

Personalised recommendations