Skip to main content
Log in

Entrainaient and demixing in subsonic argon/helium thermal plasma jets

  • Reviewed Paper
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The velocity, temperature, entrained air fraction, and Ar/He concentration profiles were measured in a subsonic thermal plasma jet using an enthalpy probe and mass spectrometer. Through interaction with the surrounding atmosphere, air is quickly entrained into the jet, resulting in rapidly decreasing velocities and temperatures. Due to the difference in ionization potential, a significant diffusive separation or demixing of Ar and He is also observed in the large temperature gradients present. Near the exit of the torch, in the jet center, the relative He concentration is enhanced by approximately 50% over that of the premixed feed gases. Demixing occurs primarily in the discharge region and torch nozzle. As jet mixing progresses in the downstream direction, the Ar to He ratio approaches the initial input ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pfender, J.R. Fincke, and R. Spores, Entrainment of Cold Gas into Thermal Plasma Jets,Plasma Chem. Plasma Proc, Vol 11, 1991, p 529–542

    Article  CAS  Google Scholar 

  2. J.R. Fincke, R. Rodriguez, and CG. Pentecost, Coherent Anti-Stokes Raman Spectroscopic Measurement of Air Entrainment in Argon Plasma Jets,Plasma Processing and Synthesis of Materials III, Materials Research Society Symposia Proc, Vol 190, D. Apelian and J. Szekely.Ed., 1991, p 184–189

  3. J.R. Fincke, R. Rodriguez, and CG. Pentecost, Measurement of Air En- trainment in Plasma Jets,Thermal Spray Research and Applications, T.F. Bernecki, Ed., ASM International, 1991, p 45–48

  4. R. Spores and E. Pfender, Flow Structure of a Turbulent Plasma Jet,Thermal Spray: Advances in Coatings Technology, D.L. Houck, Ed., ASM International, 1988, p 85–92

  5. M. Vardelle, A. Vardelle, Ph. Roumilhac, and P. Fauchais, Influence of the Surrounding atmosphere Under Plasma Spraying Conditions,Thermal Spray: Advances in Coatings Technology, D.L. Houck, Ed., ASM International, 1988, p 117–121

  6. W. Frie and H. Maecker, Massentrennung durch Diffusion Reagieren- der Gase,Z. Physik Bd., Vol 162,1961, p 69–83 (in German)

    Article  CAS  Google Scholar 

  7. H. Maecker, Fortschritte in der Bogenphysik,Proc. 5th Int. Conf. Ioni- zation Phenomena in Gases, North-Holland, p 1793–1811

  8. J. Richter, Uber Difftisionsvorgange in Lichtbogen,Z. Astrophysik, Vol 53, 1961, p 262–272 (in German)

    Google Scholar 

  9. W. Frie, Berechnung der Gasusammensetzung und der Materialfunk- tionen von SF6,Z. Physik, Bd., Vol 201, 1967, p 269–294, in German

    Article  CAS  Google Scholar 

  10. D. Vukanovic and V. Vukanovic, On the Behavior of Hydrogen Isotopes in a DC Arc Plasma,Spectrochimica Acta, Vol 24B, 1969, p 579–583

    Google Scholar 

  11. G. Baruschka and E. Schulz-Gulde, Transition Probabilities for F I Lines from Wall Stabilized Arc Measurements,Astronotics Astrophys- ics, Vol 44, 1975, p 335–342

    Google Scholar 

  12. E. Fisher, Axial Segregation of Additives in Mercury-Metal-Halide Arcs,J. Appl. Phys.,Vol 47, 1976, p 2954–2960

    Article  Google Scholar 

  13. H.-P. Stormberg, Axial and Radial Segregation in Metal Halide Arcs,J. Appl. Phys.,Vol52, 1981, p 3233–3237

    Article  CAS  Google Scholar 

  14. J. Grey, Thermodynamic Methods of High-Temperature Measurement,ISA Trans., Vol 4, 1965, p 102–115

    Google Scholar 

  15. S. Katta, J.A. Lewis, and W.H. Galvin, A Plasma Calorimetric Probe,Rev. Sci. Instr, Vol 44, 1975, p 1519–1523

    Article  Google Scholar 

  16. J. Grey, P.F. Jacobs, and M.P. Sherman, Calorimetric Probe for the Measurement of Extremely High Temperatures,Rev. Sci. Instr., Vo133, 1962, p 738–741

    Article  Google Scholar 

  17. J. Grey, Sensitivity Analysis for The Calorimetric Probe,Rev. Sci. Instr., Vol 34, 1963, p 857–859

    Article  Google Scholar 

  18. T.J. O’Connor, E.H. Comfort, and L.A. Cass, Turbulent Mixing of an Axisymmetric Jet of Partially Dissociated Nitrogen with Ambient Air,AIAA J., Vol 4,1966, p 2026–2032

    Article  CAS  Google Scholar 

  19. L.A. Anderson and R.E. Sheldahl, Experiments With Two Flow-Swal- lowing Enthalpy Probes in High-Energy Supersonic Streams,AIAA J., Vol 9,1971, p 1804–1810

    Google Scholar 

  20. W.L.T. Chen, J. Heberlein, and E. Pfender, “Experimental Measurements of Plasma Properties for Miller SG-100 Torch with Mach I Settings. Part 1 : Enthalpy Probe Measurements,≓ Report, Engineering Research Center for Plasma-Aided Manufacturing, Dept. of Mech. Engr., Univ. of Minn., Aug 1990

  21. M. Brossa and E. Pfender, Probe Measurements in Thermal Plasma Jets,Plasma Chem. Plasma Proc.,Vol 8,1988, p75–90

    Article  CAS  Google Scholar 

  22. A. Capetti and E. Pfender, Probe Measurements in Argon Plasma Jets Operated in Ambient Argon,Plasma Chem. Plasma Proc, Vol 9, 1989, p 329–339

    Article  CAS  Google Scholar 

  23. P. Stefanovic, P. Pavlovic, and M. Jankovic, High Sensitive Calorimet- ric Probe for Diagnostics Thermal Plasma at the Exit of Electric Arc Heater,Proc. 9th Int. Symp. Plasma Chemistry, IUPAC, Vol 1,1989, p314–319

    Google Scholar 

  24. W.D. Swank, J.R. Fincke, and D.C. Haggard, Modular Enthalpy Probe and Gas Analyzer for Thermal Plasma Measurements,Rev.Sci. Instr., Vol 64,1993, p 56–62

    Article  CAS  Google Scholar 

  25. J.R. Fincke, S.C. Snyder, and W.D. Swank, Comparison of Enthalpy Probe and Laser Light Scattering Measurement of Thermal Plasma Temperatures and Velocities,Rev.Sci. Instr, Vol 64, 1993, p 711–724

    Article  CAS  Google Scholar 

  26. J.R. Fincke, W.D. Swank, S.C. Snyder, and D.C. Haggard, Detached Shock Enthalpy Probe Performance,Proc. Int. Symp. Plasma Chem- istry, ISPC-11, IUPAC, Leicestershire, UK, Aug 1993, p 475–480

    Google Scholar 

  27. I.M. Hall, The Displacement Effect of a Sphere in a Two-Dimensional Shear Flow,J. Fluid Mechan., Vol 1, 1956, p 142–162

    Article  Google Scholar 

  28. M.J. Lighthill, Contributions to the Theory of the Pitot-Tube Displace- ment Effect,J. Fluid Mechan., Vol2,1957,p493–512

    Article  Google Scholar 

  29. P.O.A.L. Davies, The Behavior of a Pitot Tube in Transverse Shear,J. Fluid Mechan., Vol 3, 1957, p 441–456

    Article  Google Scholar 

  30. G.L. Brown and A. Roshko, On Density Effects and Large Structure in Turbulent Mixing Layers,J. Fluid Mechan., Vol 64,1974, p 775–816

    Article  Google Scholar 

  31. P.O. Witze, Centerline Decay of Compressible Free Jets,AIAA J., Vol 12, 1974, p417–418

    Google Scholar 

  32. H. Schlichting,Boundary Layer Theory, McGraw Hill, 1968, p 17

  33. W.E. Ranz and W.R. Marshall, Jr.,Chem. Eng. Prog., Vol 48, 1952, p 141 and Vol 48, 1952, p 173

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fincke, J.R., Swank, W.D. & Haggard, D.C. Entrainaient and demixing in subsonic argon/helium thermal plasma jets. JTST 2, 345–350 (1993). https://doi.org/10.1007/BF02645863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645863

Key words

Navigation