Skip to main content
Log in

On fracture initiation mechanisms and dynamic recrystallization during hot deformation of pure nickel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

During hot deformation of pure nickel, three distinctive fracture initiation mechanisms are identified: ductile cavity initiation at high strain rates, wedge type intergranular cracks due to grain boundary sliding at intermediate strain rates, and creep cavitation on the boundaries normal to the maximum principal stress at very low strain rates. Dynamic recrystallization is found to be effective in eliminating such fracture damage in a certain range of temperature and strain rate. By combining the strain rate-temperature conditions for the various fracture initiation mechanisms and effective dynamic recrystallization, a hot-working map is developed for nickel, which displays a safe hot working window in the strain rate-temperature field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henry Wiggin and Company Limited Technical Publication, Hereford, England, “Nickel 200 and 201,” Publication 3570, 1972, p. 10.

  2. Huntington Alloy Products Division, The International Nickel Company Inc., Technical Publication, Huntington, WV, “INCONEL ALLOY X-750,” revised edition, 1970.

  3. R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 1089–97.

    Google Scholar 

  4. E. Shapiro and G. E. Dieter:Metall. Trans., 1971, vol. 2, pp. 1385–91.

    CAS  Google Scholar 

  5. R. A. Ayers:Metall. Trans. A, 1977, vol. 8A, p. 487.

    Google Scholar 

  6. S. H. Goods and L. M. Brown:Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  7. N. J. Grant and A. W. Mullendore: “Deformation and Fracture at Elevated Temperatures,” M. I.T. Press, Cambridge, MA, 1965, pp. 165–211.

    Google Scholar 

  8. F. W. Crossman and M. F. Ashby:Acta Metall., 1975, vol. 13, p. 425.

    Google Scholar 

  9. H. C. Chang and N. J. Grant:Trans. AIME, 1956, vol. 206, p. 544.

    Google Scholar 

  10. N. J. Grant: “Fracture Vol. III,” H. Liebowitz, ed., Academic Press, 1971, p. 519.

  11. C. Gandhi: Ph. D. Thesis, Cambridge University, Cambridge, England, 1978.

    Google Scholar 

  12. I. W. Chen and A. S. Argon:Acta Metall., 1981, vol. 29, pp. 1321–33.

    Article  CAS  Google Scholar 

  13. R. C. Koeller and R. Raj:Acta Metall., 1978, vol. 26, p. 1551.

    Article  CAS  Google Scholar 

  14. C. Gandhi and R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 515–20.

    Google Scholar 

  15. G. A. Alers, J. R. Neighbours, and H. Sato:J. Phys. Chem. Solids, 1960, vol. 13, pp. 40–55.

    Article  CAS  Google Scholar 

  16. P. E. Armstrong and H. L. Brown:Trans. TMS-AIME, 1964, vol. 230, pp. 962–66.

    CAS  Google Scholar 

  17. A. R. Wazzan:J. Appl. Phys., 1965, vol. 36, pp. 3596–99.

    Article  CAS  Google Scholar 

  18. W. R. Upthegrove and M. S. Sinnott:Trans. ASM, 1958, vol. 50, pp. 1031–46.

    Google Scholar 

  19. R. Raj:Acta Metall., 1978, vol. 26, pp. 995–1006.

    Article  CAS  Google Scholar 

  20. C. Gandhi and R. Raj:Acta Metall., 1982, vol. 30, pp. 505–11.

    Article  CAS  Google Scholar 

  21. W. J. McG. Tegart: “Ductility,” ASM Publications, Metals Park, OH, 1967, p. 133

    Google Scholar 

  22. J. C. Blade:Met. Sci. J., 1979, vol. 13 pp. 206–10

    CAS  Google Scholar 

  23. D. Hardwick, C. M. Sellars, and W. J. McG. Tegart:J. Inst. Metals, 1961, vol. 90 pp. 21–22

    Google Scholar 

  24. G. J. Richardson, C. M. Sellars, and W.J. McG. Tegart:Acta Metall., 1966, vol. 14 pp. 1225–36

    Article  CAS  Google Scholar 

  25. J. P. Sah, G. J. Richardson, and C. M. Sellars:J. Aust. Inst. Metals 1969, vol. 14 pp. 292–97

    CAS  Google Scholar 

  26. M. J. Luton and C. M. Sellars:Acta Metall., 1969, vol. 17 pp. 1033–43

    Article  CAS  Google Scholar 

  27. J. P. Sah, G. J. Richardson, and C. M. Sellars:Metal Sci. J., 1974, vol. 8 pp. 325–31

    CAS  Google Scholar 

  28. C. M. Sellars:Phil. Trans. Roy. Soc. Lond., 1978, vol. 288 pp. 147–58

    CAS  Google Scholar 

  29. E. Shapiro: Ph. D. Thesis, Drexel Univ., Philadelphia, PA, 1969.

    Google Scholar 

  30. P. Shahinian and J. Weertman:Trans. AIME, 1956, vol. 206 pp. 1223–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, C. On fracture initiation mechanisms and dynamic recrystallization during hot deformation of pure nickel. Metall Trans A 13, 1233–1238 (1982). https://doi.org/10.1007/BF02645506

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645506

Keywords

Navigation