Skip to main content
Log in

Wedge type creep damage in low cycle fatigue

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A model is proposed to quantify the accumulation of wedge type creep damage in low cycle fatigue. It is proposed that such damage is produced primarily during the ramp periods of the cycle. Equations are developed for estimating incremental accumulation of damage per cycle in fully reversed, multiaxial loading. The rate of accumulation of damage depends on the strain-rate, the temperature, and the microstructure. The analysis is kept simple by making physically reasonable assumptions. Cycles to failure are predicted by invoking a fracture criterion. The model is applied to two sets of data; one set is a well characterized life test data on an aluminum alloy, and the other is phenomenological data on austenitic stainless steels. In both cases the predictions are good enough to prompt further experimental evaluation of the model. This paper deals with only one mechanism of creep-fatigue interaction. Other mechanisms of failure,e.g., ‘r’ type cavitation, or fatigue crack initiation and propagation, are also viable. The model described here may be expected to apply only under those conditions when wedge damage is the dominant failure mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Coffin, Jr.:ASTM STP 520, 1973, pp. 123–36.

    Google Scholar 

  2. S. S. Manson:ibid., pp. 744–82.

    CAS  Google Scholar 

  3. B. Tomkins and J. Wareing:Metal Sci. J., 1977, vol. 11, p. 414.

    CAS  Google Scholar 

  4. B. K. Min and R. Raj:Acta Metall., 1978, vol. 26, pp. 1007–22.

    Article  CAS  Google Scholar 

  5. G. J. Lloyd and J. Wareing:J. Eng. Mater. Tech., Trans. ASME, 1979, vol. 101, pp. 275–83.

    Article  CAS  Google Scholar 

  6. D. J. Michel and H. H. Smith:Acta Metall., 1980, vol. 28, pp. 999–1007.

    Article  CAS  Google Scholar 

  7. S. Baik and R. Raj:Metall. Trans. A, 1982, vol. 13A, p. 1215.

    Google Scholar 

  8. D. McLean and A. Pineau:Metall. Sci., 1978, vol. 13, p. 313.

    Google Scholar 

  9. M. Kitagawa,ASTM STP 519, 1973, pp. 58–69.

    Google Scholar 

  10. F. F. Lange, B. I. Davis, and D. R. Clarke:J. Mat. Sci., 1980, vol. 15, pp. 601–10.

    Article  CAS  Google Scholar 

  11. F. A. Crossman and M. F. Ashby:Acta Metall., 1975, vol. 23, p. 425.

    Article  CAS  Google Scholar 

  12. C. Gandhi and R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 515–20.

    Google Scholar 

  13. S. Majumdar and P. S. Maiya:Canad. Metall. Quart., 1979, vol. 18, pp. 57–64.

    CAS  Google Scholar 

  14. “Cases of ASME Boiler and Pressure Vessel Code,” ASME Code Case 1592 (now N-47).

  15. R. Raj and A. K. Ghosh:Metall. Trans. A, 1981, vol. 12A, pp. 1291–1302.

    Google Scholar 

  16. Z. Marciniak,Aspects of Material Formability, Dept. of Mech. Eng., McMaster University, Hamilton, Ont., Canada, 1974.

    Google Scholar 

  17. Metals Handbook, ASM, Metals Park, OH, 9th ed., 1979, vol. 2, p. 102.

  18. S. Taira, M. Fujino, and T. Takahashi:J. Soc. Mat. Sci. Japan, 1978, vol. 27, p. 434.

    CAS  Google Scholar 

  19. B. K. Min and R. Raj:Canad. Metall. Quart., 1979, vol. 18, pp. 171–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baik, S., Raj, R. Wedge type creep damage in low cycle fatigue. Metall Trans A 13, 1207–1214 (1982). https://doi.org/10.1007/BF02645503

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645503

Keywords

Navigation