Skip to main content
Log in

Surface Hardening and Microstructural Changes in 304 Stainless Steel Resulting from Elevated Temperature Ultrasonic Vibration

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of 40 kHz ultrasonic vibration at 925 °C on hardness and substructure has been studied for 304 stainless steel. Vibration at 33 MPa and 40 MPa stress amplitude produced an increase in hardness although the degree of hardening was nonuniform throughout the specimens. Hardening was greatest near the surface and decreased with distance from the surface. The amount of hardening and depth of the hardened region increased nonlinearly with the stress amplitude of the vibration. The surface hardening resulted from an increased dislocation density, deformation twinning, and enhanced precipitation of dispersed M23C6 carbide. The incidence of deformation twinning in the surface region was attributed to the inherently low stacking fault energy of the material, high strain rate, and severe strain localization along slip bands. Although deformation was more uniform at the surface, grain boundary regions in the interior of vibrated specimens showed a hardening compared to unvibrated annealed samples. In this case, the strengthening resulted from a dislocation cell structure primarily near grain boundaries combined with increased carbide precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kusmany and B. Weiss:Arch. Eisenhut., 1968, vol. 11, p. 837.

    Google Scholar 

  2. A. Stanzl, R. Mitsche, and B. Weiss:Arch. Eisenhut., 1970, vol 41 p. 867.

    CAS  Google Scholar 

  3. A. Puskar:Phys. Met. Metallog., 1973, vol. 36, p. 155.

    Google Scholar 

  4. A. Puskar:J. Iron and Steel Inst., 1972, vol. 210, p. 515.

    CAS  Google Scholar 

  5. A. Puskar:Acta Met., 1976, vol. 24, p. 861.

    Article  CAS  Google Scholar 

  6. B. Weiss:Proc. 1st Intl. Symp. on High Power Ultrasonics, A. H. Crawford, ed., IPC Science and Technology Press, Surrey, United Kingdom, 1970, p. 36.

    Google Scholar 

  7. K. L. Maurer:ibid., p. 53.

  8. G. Kralik and B. Weiss:Zeitschr. Metallk., 1967, vol. 58, p. 471.

    CAS  Google Scholar 

  9. M. M. Shea and B. V. N. Rao: “Influence of Ultrasonic Treatment on the Substructure in 304 Stainless Steel,” General Motors Research Laboratories Research Publication GMR-3404, 1980.

  10. M. R. Staker and D. L. Holt:Acta Met., 1972, vol. 20, p. 569.

    Article  CAS  Google Scholar 

  11. J. A. Venables:Deformation Twinning, R. E. Reed-Hill, ed., Gordon and Breach Science Publishers, New York, NY, 1963, p. 77.

    Google Scholar 

  12. G. Konig and W. Blum:Acta Met., 1980, vol. 28, p. 519.

    Article  CAS  Google Scholar 

  13. J. Hausselt and W. Blum:Acta Met., 1976, vol. 24, p. 1027.

    Article  CAS  Google Scholar 

  14. M. H. Lewis and B. Hattersley:Acta Met., 1965, vol. 13, p. 1159.

    Article  CAS  Google Scholar 

  15. E. E. Laufer and W. N. Roberts:Phil. Mag., 1964, vol. 10, p.883.

    CAS  Google Scholar 

  16. E. E. Laufer and W. N. Roberts:Phil. Mag., 1966, vol. 14, p. 65.

    Google Scholar 

  17. P. O. Kettunen:Acta Met., 1967, vol. 15, p. 1275.

    Article  CAS  Google Scholar 

  18. R. P. Wei and A. J. Baker:Phil. Mag., 1965, vol. 11, p. 1087.

    CAS  Google Scholar 

  19. R. P. Wei and A. J. Baker:Phil. Mag., 1965, vol. 12, p. 1005.

    CAS  Google Scholar 

  20. S. Stanzl and R. Mitsche:Arch. Eisenhut., 1971, vol. H6, p. 411.

    Google Scholar 

  21. J. C. M. Li:Trans. TMS-AIME, 1963, vol. 227, p. 239.

    CAS  Google Scholar 

  22. E. Hombogen:Trans. ASM, 1963, vol. 56, p. 16.

    Google Scholar 

  23. C. Zener:Phys. Rev., 1938, vol. 53, p. 90.

    Article  Google Scholar 

  24. C. Zener:Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, IL, 1948, p. 154.

    Google Scholar 

  25. G. Schoeck:Phys. Status Solidi, 1969, vol. 32, p. 651.

    CAS  Google Scholar 

  26. B. Weiss and K.L. Maurer:Metall., 1968, vol. H9, p. 915.

    Google Scholar 

  27. J. Awatani, K. Katagiri, and A. Koreeda:Bull. Jap. Soc. Mech. Eng., 1970, vol. 13, p. 1321.

    Google Scholar 

  28. R. W. Cahn:Deformation Twinning, R. E. Reed-Hill, ed., Gordon and Breach Science Publishers, New York, NY, 1963, pp. 13–14.

    Google Scholar 

  29. J. P. Hirth and J. Lothe:Theory of Dislocations, McGraw Hill, New York, NY, 1968, pp. 254–56.

    Google Scholar 

  30. N. Terao and B. Sasmal:Metallography, 1980, vol. 13, p. 117.

    Article  CAS  Google Scholar 

  31. D. V. Edmonds and R.W.K. Honeycombe:Precipitation Processes in Solids, K. C. Russell and H. I. Aaronson, eds., AIME, New York, NY, 1978, p. 134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, M.M., Rao, B.V.N. Surface Hardening and Microstructural Changes in 304 Stainless Steel Resulting from Elevated Temperature Ultrasonic Vibration. Metall Trans A 13, 1167–1176 (1982). https://doi.org/10.1007/BF02645498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645498

Keywords

Navigation