Journal of Phase Equilibria

, Volume 16, Issue 4, pp 315–319 | Cite as

The cubic-tetragonal phase equilibria in the ZrO2-R2O3 (R = Y, Gd, Sm, Nd) systems

  • J. Katamura
  • T. Seki
  • T. Sakuma
Section I: Basic and applied research


The cubic-tetragonal (c-t) phase equilibria in the ZrO2-R2O3 (R = Nd, Sm, Gd, Y) systems are examined both experimentally and theoretically. The width of the c-t two-phase field is not simply described as a function of oxygen vacancies as proposed by Hillert and Sakuma (Ref 6) but is dependent on ionic radius of trivalent cations. The larger the ionic radius, the wider the two-phase field. The result is satisfactorily explained by the addition of the excess energy term caused by strain energy in cubic solid solutions to the original model.


Zirconia Phase Equilibrium Oxygen Vacancy Ionic Radius Excess Gibbs Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 1.
    H.G. Scott, “Phase Relationships in the Zirconia-Yttria System,”J. Mater. Sci., 10,1527–1535 (1975).CrossRefGoogle Scholar
  2. 2.
    V. Lanteri, A.H. Heuer, and T.E. Mitchell, “Tetragonal Phase in the Systems ZrO2-Y2O3,”Advances in Ceramics, Science and Tech- nology in Zirconia II, Vol. 12, N. Claussen et al.. Ed., American Ce- ramic Society, 118 (1984).Google Scholar
  3. 3.
    M. Rühle, N. Claussen, and A.H. Heuer, “Microstructure Studies of Y2O3-Containing Tetragonal Z1O2 Polycrystals (Y-TZP),”Ad- vances in Ceramics, Science and Technology in Zirconia II, Vol. 12, N. Claussen et al., Ed., American Ceramic Society, 352 (1984).Google Scholar
  4. 4.
    T. Yagi, A. Sakai, N. Ishizawa, N. Mizutani, and M. Kato, “Analyti- cal Electron Microscopy of Yttria-Partially-Stabilized Zirconia Crystal,”J. Am. Ceram. Soc, 69(1), C3-C4 (1986).CrossRefGoogle Scholar
  5. 5.
    N. Yoshikawa and H. Suto, “Phase Diagram and Microstructure of Yttria Partially Stabilized Zirconia,”J. Jpn. Inst. Met., 50(12), 1101- 1108(1986).Google Scholar
  6. 6.
    M. Hillert and T. Sakuma, “Thermodynamic Modeling of the c → t Transformation in Z1O2 Alloys,”Acta Metall. Mater, 39(6), 1111- 1115(1991).CrossRefGoogle Scholar
  7. 7.
    T. Sakuma, “Phase Transformation and Microstructure of Partially- Stabilized Zirconia,”Trans. Jpn. Inst. Met., 29(11), 879–893 (1988).Google Scholar
  8. 8.
    T. Sakuma and H. Hata,Advances in Zirconia Science and Technol- ogy, S. Meriani and C. Palmonari, Ed., Elsevier, 283 (1989).Google Scholar
  9. 9.
    T. Sakuma and H. Hata, “Diffusionless Cubic-Tetragonal Transfor- mation and Microstructure in Z1O2-Y2O2,”J. Jpn. Inst. Met., 53(9), 972–979(1989).Google Scholar
  10. 10.
    M. Hillert, “Thermodynamic Model of the Cubic → Tetragonal Transition in Nonstoichiometric Zirconia,”J. Am. Ceram. Soc., 74(8), 2005–2006 (1991).CrossRefGoogle Scholar
  11. 11.
    Y Yoshizawa and T. Sakuma, “Evolution of Microstructure and Grain Growth in Z1O2-Y2O3 Alloys,”ISIJ Int., 29(9), 746–752 (1989).CrossRefGoogle Scholar
  12. 12.
    D.K. Leung, C.-J. Chan, M. Ruhle, and F.F. Lange, “Metastable Crystallization, Phase Partitioning, and Grain Growth of ZrO2- Gd2O3 Materials Processed from Liquid Precursors,”J. Am. Ceram. Soc, 74(11), 2786–2792 (1991).CrossRefGoogle Scholar
  13. 13.
    R.J. Ackermann, E.G. Rauh, and C.A. Alexander, “The Thermody- namic Properties of ZrO2(g),”High Temp. Sci., 7,304–316 (1975).Google Scholar
  14. 14.
    R.D. Shannon, “Revised Effective Ionic Radii and Structure Studies of Interatomic Distances in Halides and Chalcigenides,”Acta Crys- tallogr. A, 32,751–767 (1976).CrossRefADSGoogle Scholar
  15. 15.
    D.J. Kim, “Lattice Parameters, Ionic Conductivities, and Solubili- ties Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions,”J Am. Ceram. Soc, 74(8), 1415–1421 (1989).CrossRefGoogle Scholar
  16. 16.
    P. Li, I.W. Chen, and J.E.P. Hahn, “Effect of Dopants on Zirconia Stabilization—An X-Ray Absorption Study: III, Charge-Compen- sating Dopants,”J. Am. Ceram. Soc, 77(5), 1289–1295 (1994).CrossRefGoogle Scholar
  17. 17.
    M. Yoshimura, “Phase Stability of Zirconia,”Ceram. Bull, 67(12), 1950–1955(1988).Google Scholar
  18. 18.
    S.K. Chan, “The Polymorphic Transformation of Zirconia,”Phisica B,150,212–222(1988).CrossRefGoogle Scholar
  19. 19.
    R.H. J. Hannink, “Growth Morphology of the Tetragonal Phase in Partially Stabilized Zirconia,”J. Mater Sci., 13,2487–2496 (1978).CrossRefGoogle Scholar
  20. 20.
    V. Lanteri, R. Chaim, and A.H. Heuer, “On the Microstructure Re- sulting from the Diffusionless Cubic→Tetragonal Transformation in ZrO2-Y2O3 Alloys,”J. Am. Ceram. Soc, 69 (10), C258-C261 (1986).CrossRefGoogle Scholar
  21. 21.
    T. Sakuma, “The Cubic-Tetragonal Transformation in Zirconia Alloys.”Science and Technology of Zirconia V, S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink, Ed., Thchnomic Pub. Co., Lancas- ter, Pa., p. 86(1993).Google Scholar
  22. 22.
    T. Sakuma, Y. Yoshizawa, and H. Suto, “The Modulated Structure Formed by Isothermal Aging in ZrO2-5.2mol%Y2O3 Alloy,”J. Mater. Sci, 20,1085–1092 (1985).CrossRefGoogle Scholar
  23. 23.
    T. Sakuma, T. Yoshizawa, and H. Suto, “The Metastable Two-Phase Region in the Zirconia-Rich Part of the ZrO2-Y2O3 System,”J. Ma- ter Sci., 21,1436–1440(1986).Google Scholar
  24. 24.
    T. Sakuma, “Development of Domain Structure Associated with the Diffusionless Cubic-to-Tetragonal Transition in ZrO2-Y2O3 Al- loys,”J. Mater. Sci., 22,4470–4475 (1987).CrossRefGoogle Scholar

Copyright information

© ASM International 1995

Authors and Affiliations

  • J. Katamura
    • 1
  • T. Seki
    • 1
  • T. Sakuma
    • 1
  1. 1.Department of Materials Science, Faculty of EngineeringThe University of TokyoTokyo113 Japan

Personalised recommendations