Skip to main content
Log in

Gravity and configurational energy induced microstructural changes in liquid phase sintering

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Liquid phase sintered materials consist of interconnected crystalline grains in a homogeneous matrix phase that forms the liquid at high temperatures. The dihedral angle, grain size, and volume fraction of solid determine the energy of the system. Energy minimization is possible by the separation of phases due to density differences. This explains why some materials exhibit settling or distortion due to gravity during liquid phase sintering. Experiments performed with W-Ni-Fe heavy alloys are used to measure the microstructural changesvs position that occur in liquid phase sintering under normal gravity. The experimentally observed segregation is less than the calculated equilibrium seg-regation due to the retarding effect from the rigid solid skeleton formed during sintering. These re-sults improve our understanding of microstructure, mechanical properties, component shape, and dimensional stability benefits that may be realized from low gravity sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. German:Liquid Phase Sintering, Plenum Press, New York,, NY, 1985.

    Google Scholar 

  2. H.S. Waff:J. Geophysical Res., 1980, vol. 85, pp. 1815–25.

    Google Scholar 

  3. H. S. Nayar:Modern Developments in Powder Metallurgy, H. H. Hausner and P. W. Taubenblat, eds., Metal Powder Industries Feder- ation, Princeton, NJ, 1977, vol. 11, pp. 109–41.

    Google Scholar 

  4. W. E. Gurwell:Prog. Powder Met., 1985, vol. 41, pp. 327–46.

    CAS  Google Scholar 

  5. P.M. Ossi, R. Roberti, and G. Silva:Scripta Metall., 1985, vol. 19, pp. 569–74.

    Article  CAS  Google Scholar 

  6. C.M. Kipphut, T. Kishi, A. Bose, and R.M. German:Prog. Pow- der Met., 1987, vol. 43, pp. 93–106.

    CAS  Google Scholar 

  7. F. V. Lenel:Powder Metallurgy Principles and Applications, Metal Powder Industry Federation, Princeton, NJ, 1980.

    Google Scholar 

  8. S. Takago, W. A. Kaysser, and G. Petzow:Acta Metall., 1984, vol. 32, pp. 107–13.

    Article  Google Scholar 

  9. T.H. Courtney and J.K. Lee:Metall. Trans. A, 1980, vol. 11A, pp. 943–47.

    CAS  Google Scholar 

  10. R. V. Makarova, O. K. Teodorovich, and I. N. Frantsevich:Soviet Powder Met. Metal Ceram., 1965, vol. 4, pp. 554–59.

    Google Scholar 

  11. L. Kozma, W. J. Huppmann, L. Bartha, and P. Mezei:Powder Met., 1981, vol. 24, pp. 7–11.

    CAS  Google Scholar 

  12. W. J. Huppmann and G. Petzow:Sintering Processes, G. C. Kuczynski, ed., Plenum Press, New York, NY, 1980, pp. 189–201.

    Google Scholar 

  13. H. Fischmeister and G. Grimvall:Sintering and Related Phenomena, G.C. Kuczynski, ed., Plenum Press, New York, NY, 1973, pp. 119–49.

    Google Scholar 

  14. P.W. Voorhees:J. Stat. Phys., 1985, vol. 38, pp. 231–52.

    Article  Google Scholar 

  15. P.W. Voorhees and M. E. Glicksman:Metall. Trans. A, 1984, vol. 15A, pp. 1081–88.

    CAS  Google Scholar 

  16. P.W. Voorhees and M.E. Glicksman:Acta Metall., 1984, vol. 32, pp. 2001–11.

    Article  CAS  Google Scholar 

  17. R.M. German:Metall. Trans. A, 1985, vol. 16A, pp. 1247–52.

    CAS  Google Scholar 

  18. B.H. Rabin and R.M. German:Metall. Trans. A, 1988, vol. 19A, pp. 1523–32.

    CAS  Google Scholar 

  19. R. M. German:Metall. Trans. A, 1987, vol. 18A, pp. 909–14.

    CAS  Google Scholar 

  20. W. Beere:Acta Metall., 1975, vol. 23, pp. 131–38.

    Article  CAS  Google Scholar 

  21. P. J. Wray:Acta Metall., 1976, vol. 24, pp. 125–35.

    Article  CAS  Google Scholar 

  22. H.H. Park and D. N. Yoon:Metall. Trans. A, 1985, vol. 16A, DD. 923–28.

    CAS  Google Scholar 

  23. A.F. Lisovsky:Powder Met. Inter., 1987, vol. 19, pp. 18–21.

    Google Scholar 

  24. B. H. Rabin, A. Bose, and R. M. German:Microstructural Science, M.E. Blum, P.M. French, R.M. Middleton, and G.F. Vander Voort, eds., Elsevier Scientific, New York, NY, 1987, pp. 285–99.

    Google Scholar 

  25. R. Mehrabian, M. Keane, and M.C. Flemings:Metall. Trans., 1970, vol. 1, pp. 1209–20.

    CAS  Google Scholar 

  26. M.H. Johnston and R. A. Parr:Metall. Trans. B, 1982, vol. 13B, pp. 85–90.

    CAS  Google Scholar 

  27. M. Simpson and M. C. Flemings:Metall. Trans. A, 1984, vol. 15A, pp. 2095–97.

    CAS  Google Scholar 

  28. S. Farooq: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1988.

    Google Scholar 

  29. R.M. German and Z.A. Munir:Metall. Trans. B, 1975, vol. 6B, pp. 289–94.

    Article  CAS  Google Scholar 

  30. E.G. Zukas and H. Sheinberg:Powder Tech., 1976, vol. 13, pp. 85–96.

    Article  CAS  Google Scholar 

  31. E. G. Zukas, P. S. Z. Rogers, and R. S. Rogers:Z. Metallkde., 1976, vol. 67, pp. 591–95.

    CAS  Google Scholar 

  32. E.G. Zukas and L. S. Levinson:J. Mater. Sci., 1975, vol. 10, pp. 863–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Experimental Methods for Microgravity Materials Science Research” presented at the 1988 TMS-AIME Annual Meeting in Phoenix, Arizona, January 25-29, 1988, under the auspices of the ASM/MSD Thermo-dynamic Data Committee and the Material Processing Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipphut, C.M., Bose, A., Farooq, S. et al. Gravity and configurational energy induced microstructural changes in liquid phase sintering. Metall Trans A 19, 1905–1913 (1988). https://doi.org/10.1007/BF02645192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645192

Keywords

Navigation