Skip to main content
Log in

Directional solidification of Al- Ni/SiC composites during parabolic trajectories

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Aluminum-6.1 wt pct nickel-silicon carbide composites containing varying volume fractions and particle sizes of SiC were directionally solidified at different translation rates and temperature gradi-ents, under variable gravity levels. The gravity level was changed by solidifying the composites in a Bridgman type directional solidification furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. It was observed that high gravity, high volume fractions of the particles or high effec-tive viscosity of the liquid favors the engulfment of particles by the melt-interface. Solidification in low gravity seems to deflocculate the SiC particle agglomerates while opposite results are obtained when solidifying under high gravity. Intercellular spacings are found to be higher in low gravity so-lidification as compared to high gravity solidification. These results are discussed in terms of the influence of gravity on various physical phenomena involved in the solidification process of the above composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kawada, S. Yoshida, S. Yakahashi, E. Ozaga, and R. Yoda: AIAA 15th Aerospace Meeting, 1977, paper 77–195.

  2. H. J. Sprenger, J. Potschke, C. Potard, and V. Rogge:Fluid Sciences and Materials Science in Space, H.U. Walter, ed., Springer-Verlag, New York, NY, 1987, pp. 581–97.

    Google Scholar 

  3. S. Takahasi:Proc. of 5th Int. Conf. Composite Materials, San Diego, CA, 1985, pp. 747–55.

  4. L. Raymond and C. Y. Ang: SPAR I, Final Report, Chapter VI, NASA TM-X 3458.

  5. L. Raymond and C. Y. Ang: SPAR II, Final Report, Chapter VI, NASA TM-X 78-215, 1977.

  6. G. Wouch, G.H. Keith, R.T. Frost, and N. P. Pinto:Nature, 1978, vol. 274, pp. 235–37.

    Article  CAS  Google Scholar 

  7. J. Potschke and K. Hohenstein:Acta Astronautica, 1982, vol. 9, pp. 261–64.

    Article  Google Scholar 

  8. J. Potschke and V. Rogge:Naturwissenschaften, 1986, vol. 73, pp. 381–83.

    Article  Google Scholar 

  9. T. Froyen and A. Deruyttere:Proc. 5th Europ. Symp. Mat. Sci. un- der Microgravity, Results of Spacelab-1, Nov. 5-7, 1984, published by ESA Scientific Technical Publications Branch, Noordwik, The Netherlands, pp. 69-78.

  10. H. U. Walter:Proc. 3rd Europ. Symp. Mat. Sci. in Space, Grenoble, 1978, ESA SP=142, 1979, pp. 245–53.

  11. H. Sprenger: Final Report, TEXUS II (1978), BMFT-FB-W 81-028.

  12. J. Potschke and V. Rogge:Proc. of the Norderney Symp. on Seien- tific Results of the German Spacelab Mission DI, Norderney, Ger- many, Aug. 27-29, 1986, P. R. Sahm, R. Jansen, and M. H. Keller, eds., DFVLR, Germany, pp. 1–8.

    Google Scholar 

  13. L. Froyen and A. Deruyttere:Proc. of the Norderney Symp. on Sci- entific Results of the German Spacelab Mission DI, Norderney, Ger- many, Aug. 27-29, 1986, P. R. Sahm, R. Jansen, and M. H. Keller, eds., DFVLR, Germany, pp. 1–13.

    Google Scholar 

  14. D. M. Stefanescu, P. A. Curreri, and M. R. Fiske:Metall. Trans. A, 1986, vol. 17A, pp. 1121–30.

    CAS  Google Scholar 

  15. R. B. Bird, W. E. Stewart, and E. N. Lightfoot:Transport Phenom- ena, John Wiley & Sons, New York, NY, 1960, ch. 10.

    Google Scholar 

  16. D. R. Uhlman, B. Chalmers, and K. A. Jackson:J. Applied Physics, 1964, vol. 35, no. 10, pp. 2986–93.

    Article  Google Scholar 

  17. G.F. Boiling and J. Cisse:J. Crystal Growth, 1971, vol. 10, pp. 56–66.

    Article  Google Scholar 

  18. A.A. Chernov, D.E. Temkin, and A.M. Melnikova:Soviet Phys. Crystallography, 1976, vol. 21, p. 369.

    Google Scholar 

  19. D.J. Jeffrey and Andreas Acrivos:A.I.Ch.E. Journal, 1976, vol. 22, no. 3, pp. 417–32.

    CAS  Google Scholar 

  20. J. J. Favier and J. deGoer:Proc. 5th Europ. Symp. Mat. Sci. under Microgravity, Results of Spacelab 1, Nov. 5-7, 1987, published by ESA Scientific Technical Publications Branch, ESTEC, Noordwijk, The Netherlands, pp. 127–33.

    Google Scholar 

  21. B.K. Dhindaw, D.M. Stefanescu, A. K. Singh, and P.A. Curreri, University of Alabama, Tuscaloosa, AL, unpublished research, 1987.

  22. H. J. Sprenger:Proc. of the Norderney Symp. on Scientific Results of the German Spacelab Mission Dl, Norderney, Germany, Aug. 27-29, 1986, P.R. Sahm, R. Jansen, and M.H. Keller, eds., DFVLR, Germany.

    Google Scholar 

  23. D.J. Larson and R. G. Pirich: inMaterials Processing in the Re- duced Gravity Environment of Space, G. E. Ridnone, ed., Materials Research Society, Pittsburgh, PA, 1981, pp. 523–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Experimental Methods for Microgravity Materials Science Research” presented at the 1988 TMS-AIME Annual Meeting in Phoenix, Arizona, January 25-29, 1988, under the auspices of the ASM/MSD Thermo-dynamic Data Committee and the Material Processing Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhindaw, B.K., Moitra, A., Stefanescu, D.M. et al. Directional solidification of Al- Ni/SiC composites during parabolic trajectories. Metall Trans A 19, 1899–1904 (1988). https://doi.org/10.1007/BF02645191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645191

Keywords

Navigation