Skip to main content
Log in

Fatigue crack growth behavior of an oxide dispersion strengthened MA 956 alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Fatigue crack growth behavior of oxide dispersion strengthened ferritic MA 956 alloy was studied at 25 °C and 1000 °C in air at 0.17 Hz. The growth rates were analyzed using the linear elastic parameter ΔK and the elastic-plastic parameter ΔJ. Crack growth, although transgranular at both temperatures, increased by nearly three orders of magnitude with increase in temperature from 25 to 1000 °C. The growth rates were essentially the same in terms of either ΔK or ΔJ parameters indicating that plasticity effects are small even at 1000 °C. Detailed fractographic analysis revealed the presence of ductile striations in the ΔK range of 25 to 40 MPa√m at 25 °C and in a much narrower range at 1000 °C. Presence of voids could be detected at 1000 °C. Using the measured load-displacement hysteresis energies for a unit increment in crack length, crack growth rates were calculated using cumulative damage models and were compared with the experimental data. At 1000 °C the predicted and the experimental values agree within a factor of two and it is concluded that the growth occurs essentially by a damage accumulation process except in a narrow range of ΔK where the plastic blunting process is superimposed, resulting in ductile striations that were observed. At 25 °C the predicted and the experimental value reasonably agree for ΔK values greater than 40 MPa√m, and below this value the two diverge with predicted values being much lower. This divergence is related to occurrence of the plastic blunting process in this ΔK range as confirmed by fractographic evidence. The cumulative damage process at 1000 °C was related to the environmentally assisted void formation at dispersoid-matrix interfaces. At 25 °C the damage is related to the formation of microcracks ahead of the crack tip. These results and interrelation between alloy microstructure and fatigue fracture path are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Benjamin and M. J. Bomford:Metall. Trans., 1974, vol. 5, p. 615.

    CAS  Google Scholar 

  2. J. J. Fisher, I. Astley, and J. P. Morse: inSuperalloys: Metallurgy and Manufacture, B. H. Kear, et al., eds., Claitor’s Publishing Co., Baton Rouge, LA, 1976, p. 361.

    Google Scholar 

  3. J. Daniel Whittenberger:Metall. Trans. A, 1978, vol. 9A, pp. 101–10.

    CAS  Google Scholar 

  4. J. Daniel Whittenberger:Metall. Trans. A, 1981, vol. 12A,pp. 845–51.

    Google Scholar 

  5. S. Floreen, R. H. Kane, T. J. Kelly, and M. L. Robinson:J. Materials for Energy Systems, 1980, vol. 2, pp. 15–24.

    CAS  Google Scholar 

  6. Annual Book of ASTM Standards, Part 10, American Society for Testing and Materials, Philadelphia, PA, 1974, pp. 431-51.

  7. W. K. Wilson:Eng. Frac. Mech., 1970, vol. 2, pp. 169–71.

    Article  Google Scholar 

  8. J. G. Merkle and H. T. Corten:J. Pressure Vessel Technology, 1974, vol. 96, pp. 286–92.

    Google Scholar 

  9. K. Sadananda and P. Shahinian:Eng. Frac. Mech., 1979, vol. 11, pp. 73–86.

    Article  CAS  Google Scholar 

  10. M. E. Fine and D. L. Davidson: inQuantitative Measurements of Fatigue Damage, ASTM STP, in press.

  11. S. Ikeda, Y. Izumi, and M. E. Fine:Eng. Frac. Mech., 1977, vol. 9, p. 123.

    Article  CAS  Google Scholar 

  12. Y. Izumi and M. E. Fine:Eng. Frac. Mech., 1979, vol. 11, p. 791.

    Article  CAS  Google Scholar 

  13. L. M. Clarebrough, M. E. Hargreaves, A. K. Head, and G. W. West:Trans. AIME, 1955, vol. 203, p. 99.

    Google Scholar 

  14. L. M. Clarebrough, M. E. Hargreaves, G. W. West, and A. K. Head:Proc. Roy. Soc. (London), 1957, vol. A242, p. 160.

    CAS  Google Scholar 

  15. G. R. Halford:J. of Materials, 1966, vol. 1, p. 3.

    Google Scholar 

  16. C. E. Richards and T. C. Lindley:Eng. Frac. Mech., 1972, vol. 4, p. 951.

    Article  CAS  Google Scholar 

  17. P. Shahinian:Metals Technology, 1978, vol. 5, pp. 372–80.

    CAS  Google Scholar 

  18. L. A. James: “Effect of Temperature on the Fatigue-Crack Propagation Behavior of A-286 Steel,” HEDL-TME 75-82, UC 79 b,h, Hanford Engineering Lab., Richland, WA, 1982.

  19. G. T. Hahn, R. G. Hoagland, and A. R. Rosenfield: “Local Yielding Attending Fatigue Crack Growth,” ARL 71-0234, Aerospace Research Lab, Wright-Patterson Air Force Base, OH, 1971.

  20. M. E. McAlarney, R. M. Arons, T. E. Howson, J. K. Tien, and S. Baranow:Metall. Trans. A, 1982, vol. 13A, pp. 1453–62.

    Google Scholar 

  21. C. Laird: inFatigue Crack Growth in Structures, ASTM STP 415, American Society for Testing and Materials, Philadelphia, PA, 1967, p. 131.

    Google Scholar 

  22. J. Weertman: inMechanics of Fatigue, T. Mura, ed., American Society of Mechanical Engineers, New York, NY, 1981, p. 11.

    Google Scholar 

  23. H. W. Liu, C. Y. Young, and A. S. Kuo: inFracture Mechanics, N. Perroneet al., eds., University Press of Virginia, Charlottesville, VA, 1978, p. 629.

    Google Scholar 

  24. T. Yokobori and M. Yashida:Int. J. Frac., 1974, vol. 10, p. 467.

    Article  Google Scholar 

  25. T. Yokobori, A.T. Yokobori, Jr., and A. Kamei:Int. J. Frac., 1975, vol. 11, p. 781.

    Article  Google Scholar 

  26. J. Weertman: InFatigue and Microstructure, M. Meshii, ed., American Society for Metals, Metals Park, OH, 1978, p. 279.

    Google Scholar 

  27. J. R. Rice: inFatigue Crack Growth in Structures, ASTM STP 415, American Society for Testing and Materials, 1967, p. 247.

  28. T. Mura and C. T. Lin:Int. J. Frac., 1974, vol. 10, p. 284. See also Ref. 11.

    Article  Google Scholar 

  29. T. C. Lindley and L. N. McCartney: inDevelopments in Fracture Mechanics, G. G. Chell, ed., Applied Science Publishers, London, 1981, p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadananda, K., Shahinian, P. Fatigue crack growth behavior of an oxide dispersion strengthened MA 956 alloy. Metall Trans A 15, 527–539 (1984). https://doi.org/10.1007/BF02644977

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644977

Keywords

Navigation