Skip to main content
Log in

A geometric model for fatigue crack closure induced by fracture surface roughness

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Mechanisms for fatigue crack closure under plane strain conditions have recently been identified at very low (near-threshold) stress intensities in terms of effects of excess corrosion deposits or fracture surface roughness in promoting premature closure of the crack. In the present paper, a geometric model is presented for crack closure induced by fracture surface roughness. This model specifically addresses the contribution from both Mode I and Mode II crack tip displacements in addition to considering the nature of the fracture surface morphology. The implications of this model are briefly discussed in light of the roles of grain size, yield strength, microstructure, and crack size in influencing near-threshold fatigue behavior in engineering alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Elber: inDamage Tolerance in Aircraft Structures, ASTM STP 486, 1971, p. 280.

    Google Scholar 

  2. T. C. Lindley and C. E. Richards:Mater. Sci. Eng., 1974, vol. 14, p. 281.

    Article  CAS  Google Scholar 

  3. B. Budiansky and J. W. Hutchinson:J. Appl. Mech., Trans. ASME Series E, 1978, vol. 45, p. 267.

    Google Scholar 

  4. N. Walker and C. J. Beevers:Fat. Eng. Mat. Struct., 1979, vol. 1, p. 135.

    Article  CAS  Google Scholar 

  5. R. O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Mat. Tech., Trans. ASME Series H, 1980, vol. 102, p. 293.

    CAS  Google Scholar 

  6. A. T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.

    Article  CAS  Google Scholar 

  7. H. Kitagawa, S. Toyohira, and K. Ikeda: inFracture Mechanics in Engineering Applications, G. C. Sih and S. R. Valluri, eds., Sijthoff and Noordhof, The Netherlands, 1981.

    Google Scholar 

  8. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, p. 1435.

    Google Scholar 

  9. R. O. Ritchie: inFatigue Thresholds, Proceedings 1st Intl. Conf., Stockholm, J. Bäcklund, A. Blom, and C. J. Beevers, eds., EMAS Publ. Ltd., Warley, U.K., 1982, vol. 1, p. 503.

    Google Scholar 

  10. S. Suresh, D. M. Parks, and R. O. Ritchie:ibid., vol. 1, p. 391.

  11. B. L. Freeman, P. Smith, and A. T. Stewart:Ibid., vol. 1, p. 547.

  12. K. Minakawa and A. J. McEvily:ibid., vol. 1, p. 373.

  13. G. T. Gray, A. W. Thompson, J. C. Williams, and D. H. Stone:ibid., vol. 1, p. 345.

  14. I. C. Mayes and T. J. Baker:Fat. Eng. Mat. Tech., 1981, vol. 4, p. 79.

    Article  CAS  Google Scholar 

  15. K. Minakawa and A. J. McEvily:Scripta Met., 1981, vol. 15, p. 633.

    Article  Google Scholar 

  16. R. J. Asaro, L. Hermann, and J. M. Baik:Metall. Trans. A, 1981, vol. 12A, p. 1135.

    Google Scholar 

  17. R. O. Ritchie and S. Suresh:Metall. Trans. A, 1982, vol. 13A, p. 937.

    Google Scholar 

  18. M. R. James and W. L. Morris: submitted toMetall. Trans. A, 1982.

  19. P. J. E. Forsyth: inCrack Propagation, Proc. Symp., Cranfield, College of Aeronautics, Cranfield Press, Cranfield, U.K., 1962, p. 76.

    Google Scholar 

  20. E. P. Louwaard: Delft Univ. of Tech., Dept. Aero. Eng., Report LR-243, 1977, reported in Ref. 21.

  21. J. Schijve: inFatigue Thresholds, Proceedings 1st Intl. Conf., Stockholm, J. Bäcklund, A. Blom, and C. J. Beevers, eds., EMAS Publ. Ltd., Warley, U.K., 1982, vol. 2, p. 881.

    Google Scholar 

  22. D. L. Davidson:Fat. Eng. Mat. Tech., 1981, vol. 3, p. 229.

    Article  Google Scholar 

  23. S. Purushothaman and J. K. Tien: inStrength of Metals and Alloys, Proc. ICSMA5 Conf., P. Haasen, V. Gerold, and G. Kostotz, eds., Pergamon Press, New York, NY, 1979, vol. 2, p. 1267.

    Google Scholar 

  24. G. T. Gray: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, December 1981.

  25. R. A. Schmidt and P. C. Paris: inProgress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, 1973, p. 79.

  26. C. J. Beevers: inFatigue Thresholds, Proceedings 1st Intl. Conf., Stockholm, J. Bäcklund, A. Blom, and C. J. Beevers, eds., EMAS Publ. Ltd., Warley, U.K., 1982, vol. 1, p. 257.

    Google Scholar 

  27. R. O. Ritchie:Intl. Metals Reviews, 1979, vol. 29, p. 205.

    Google Scholar 

  28. K. Minakawa, Y. Matsuo, and A. J. McEvily:Metall. Trans. A, 1982, vol. 13A, p. 439.

    CAS  Google Scholar 

  29. J. F. McCarver and R. O. Ritchie:Mater. Sci. Eng., 1982, vol. 55, p. 63.

    Article  Google Scholar 

  30. W. L. Morris:Metall. Trans. A, 1979, vol. 11A, p. 1117.

    Google Scholar 

  31. M. H. El Haddad, N. E. Dowling, T. H. Topper, and K. N. Smith:Int. J. Fract., 1980, vol. 16, p. 16.

    Article  Google Scholar 

  32. T. S. Cook, J. Lankford, and G. P. Sheldon:Fat. Eng. Mat. Struct., 1981, vol. 3, p. 219.

    Google Scholar 

  33. S. J. Hudak:J. Eng. Mat. Tech., Trans. ASME Series H, 1981, vol. 103, p. 26.

    CAS  Google Scholar 

  34. R. P. Gangloff:Res. Mech. Letters, 1981, vol. 1, p. 299.

    CAS  Google Scholar 

  35. K. Tanaka, Y. Nakai, and M. Yamashita:Int. J. Fract., 1981, vol. 17, p. 519.

    CAS  Google Scholar 

  36. W. L. Morris, M. R. James, and O. Buck:Metall. Trans. A, 1981, vol. 12A, p. 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, S., Ritchie, R.O. A geometric model for fatigue crack closure induced by fracture surface roughness. Metall Trans A 13, 1627–1631 (1982). https://doi.org/10.1007/BF02644803

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644803

Keywords

Navigation