Skip to main content
Log in

Strain hardening behavior of polycrystalline iron and low-carbon steels—A statistical analysis

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Descriptions of strain hardening are reviewed and a common basis is sought to correlate variations of plastic behavior with microstructure. Both the reported occurrence of two-stage hardening and the magnitude of the associated change of Hollomon strain hardening exponent are shown to be closely related to carbon content and grain size. Values of the Hollomon strain hardening parameters are also shown to be correlated with carbon content and grain size together. It is demonstrated that this “double-n” behavior is not characterized by reduced strain hardening rate when the strain is greater than ~0.1, as has been suggested, but by rapid hardening at low strain. These observations are collated into a consistent account of the dependence of plastic behavior on carbon content and grain size. It is inferred that the strain hardening exponent for stage 1 is governed by both of these microstructural factors although the sensitivity to carbon content is not readily discernible in the data analyzed, apparently because grain size is strongly dependent on carbon content and their separate effects are normally obscured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Shankula, D.J. Lloyd, and J.D. Embury:Acta Metall., 1970, vol. 18, p. 1293.

    Article  Google Scholar 

  2. A.W. Thompson, M.I. Baskes, and W.F. Flanagan:Acta Metall., 1973, vol. 21, p. 1017.

    Article  Google Scholar 

  3. J. P.Bailon, A. Loyer, and J. M. Dorlot:Mat. Sci. Eng., 1971, vol. 8, p. 288.

    Article  Google Scholar 

  4. T. Gladman, B. Holmes, and F. B. Pickering:J. Iron & Steel Inst., 1970, vol. 208, p. 172.

    Google Scholar 

  5. R.W. Evans:ibid. 1967, vol. 205, p. 1150.

    Google Scholar 

  6. H.J. Kleemola:ibid. 1970, vol. 208, p. 1025.

    Google Scholar 

  7. D.J. Blickwede:Trans. ASM, 1968, vol. 61, p. 651.

    Google Scholar 

  8. W. E. Duckworth and J.D. Baird:J. Iron & Steel Inst., 1969, vol. 207, p. 854.

    Google Scholar 

  9. W.B. Morrison:Trans. ASM, 1966, vol. 59, p. 824.

    Google Scholar 

  10. P. Ludwik: “Elements der technologischen Mechanik,” Berlin, Springer, 1909.

    Book  Google Scholar 

  11. J.H. Hollomon:Trans. AIME, 1945, vol. 162, p. 268.

    Google Scholar 

  12. H.W. Swift:J. Mech. Phys. Solids, 1952, vol. 1, p. 1.

    Article  Google Scholar 

  13. A. R. Rosenfield and G. T. Hahn:Trans. ASM, 1966, vol. 59, p. 962.

    Google Scholar 

  14. S.V. Ramani and P. Rodriguez:Scripta Met., 1968, vol. 4, p. 755.

    Article  Google Scholar 

  15. J.T. Evans and R. Rawlings:Metal Sci. J., 1968, vol. 2, p. 221.

    Article  Google Scholar 

  16. W. Prager: (q.v. W. Johnson and P. B. Mellon “Plasticity for Mechanical Engineers,” London, Van Nostrand, 1962, p. 15).

    Google Scholar 

  17. E. Voce:J. Inst. Metals, 1948, vol. 74, p. 537.

    Google Scholar 

  18. J.H. Woodhead: University of Sheffield, England, private communication, May 1976.

  19. G.P. Zaitsev:Fiz. Metal. Metalloved, 1961, vol. 11, p. 910.

    Google Scholar 

  20. B. Jaoul: (a)J. Mech. Phys. Solids, 1957, vol. 5, p. 95. (b)ibid., 1961, vol. 9, p. 69.

    Article  Google Scholar 

  21. B.W. Christ and G. V. Smith:Acta Metall., 1967, vol. 15, p. 809.

    Article  Google Scholar 

  22. Y. Bergstrom and B. Aronsson:Metall. Trans., 1970, vol. 1, p. 1029.

    Google Scholar 

  23. C.T.Liu and J. Gurland:Trans. TMS-AIME, 1968, vol. 242, p. 1535.

    Google Scholar 

  24. M. Atkinson:J. Aust. Inst. Met., 1977, vol. 22, p. 183.

    Google Scholar 

  25. D. V. Wilson and Y. A. Konnan:Acta Metall., 1964, vol. 12, p. 617.

    Article  Google Scholar 

  26. W. M. Baldwin:Acta Metall., 1958, vol. 6, p. 193.

    Article  Google Scholar 

  27. S. Hori and K. Kishi:Trans. Jap. Inst. Met., 1968, Supp. to vol. 9, p. 987.

    Google Scholar 

  28. E. Anderson, D. Law, W. King, and J. Spreadborough:Trans. TMS-AIME, 1968, vol. 242, p. 115.

    Google Scholar 

  29. J. H. Woodhead:Effect of second-phase particles on mechanical properties of steel, Iron & Steel Inst., London, 1971, p. 130.

    Google Scholar 

  30. E. O. Hall:Yield point phenomena in metals and alloys, London, Macmillan, 1970, p. 37.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, M. Strain hardening behavior of polycrystalline iron and low-carbon steels—A statistical analysis. Metall Trans A 15, 1185–1192 (1984). https://doi.org/10.1007/BF02644713

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644713

Keywords

Navigation