Skip to main content
Log in

Retarded grain boundary mobility in activated sintered molybdenum

  • Symposium on Activated and Liquid Phase of Refractory Metals and Their Compounds
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Rapid grain growth accompanies the enhanced sintering of molybdenum treated with nickel additions. Grain growth is detrimental to sintering kinetics and mechanical properties. A sintering model is developed to illustrate that reducing grain boundary mobility is a means to increase the densification rate. A fine silica dispersion is added to molybdenum powder which is activated by the addition of nickel. This powder exhibits a long term sintering benefit due to retarded grain growth which is attributed to dispersoid drag effects on grain boundaries. These experimental powders are further analyzed through precision dilatometry, showing a characteristic shift in shrinkage rate during constant heating rate experiments. The shrinkage rate of molybdenum is increased by a factor of 10 at 1000°C when activated with 0.37 pct Ni. The shrinkage rate of nickel activated molybdenum is further increased by 67 pct with 1400 ppm silica dispersed at the interparticle grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alexander and R.W. Balluffi:Acta Metall., 1957, vol. 5, pp. 666–77.

    Article  Google Scholar 

  2. P. J. Jorgensen:J. Amer. Ceram. Soc, 1965, vol. 48, pp. 207–10.

    Article  Google Scholar 

  3. J.E. Burke:J. Amer. Ceram. Soc, 1957, vol. 40, pp. 80–85.

    Article  Google Scholar 

  4. C.W. Corti and P. Cotterill:Powder Met. Inter., 1974, vol. 6, pp. 23–25.

    Google Scholar 

  5. C.O. McHugh, T.J. Whalen, and M. Humenik:J. Amer. Ceram. Soc, 1966, vol. 49, pp. 486–91.

    Article  Google Scholar 

  6. C. Agte:Hutnicke Listy, 1953, vol. 8, pp. 227–34.

    Google Scholar 

  7. V. V. Panichkina, V. V. Skorokhod, and A. F. Khrienko:Soviet Powder Met. Metal Ceram., 1967, vol. 6, pp. 558–60.

    Article  Google Scholar 

  8. G.A. Gospodinov, V. K. Pangarova, and D. K. Lambiev:Soviet Powder Met. Metal Ceram., 1976, vol. 15, pp. 159–61.

    Article  Google Scholar 

  9. V. V. Skorokhod, S. M. Solonin, L. L. Kolomiets, and L. I. Shnaider- man:Soviet Powder Met. Metal Ceram., 1976, vol. 15, pp. 435–38.

    Article  Google Scholar 

  10. R.M. German and Z. A. Munir:J. Less-Common Metals, 1978, vol. 58, pp. 61–74.

    Article  Google Scholar 

  11. M.M. Lejbrant and W. Rutkowski:Inter. J. Powder Met. Powder Tech., 1978, vol. 14, pp. 17–30.

    Google Scholar 

  12. Z.A. Munir and R.M. German ;High Temp. Sci., 1977, vol. 9, pp. 275–83.

    Google Scholar 

  13. W. A. Kaysser, M. Hoffmann, and G. Petzow:Proceedings PIM-82 (International Powder Metallurgy Conference, Florence, Italy, June 1982), Associazione Italiana di Metallurgia, Milano, 1982, pp. 17–22.

    Google Scholar 

  14. J.T. Smith:J. Appl. Phys., 1965, vol. 36, pp. 595–98.

    Article  Google Scholar 

  15. G.V. Samsonov and V.I. Yakovlev:Soviet Powder Met. Metal Ceram., 1970, vol. 9, pp. 30–36.

    Article  Google Scholar 

  16. I. Amato:Mater. Sci. Eng., 1972, vol. 10, pp. 15–22.

    Article  Google Scholar 

  17. Chaojin Li and R.M. German:Metall. Trans. A, 1983, vol. 14A, pp. 2031–41.

    Article  Google Scholar 

  18. R.M. German and Z. A. Munir:Reviews Powder Met. Physical Ceram., 1982, vol. 2, pp. 9–43.

    Google Scholar 

  19. T. Ikegami, M. Tsutsumi, S. Matsuda, S. Shirasaki, and H. Suzuki:J. Appl. Phys., 1978, vol. 48, pp. 4238–41.

    Article  Google Scholar 

  20. G.C. Kuzcynski:Powder Met., 1963, vol. 6, pp. 1–16.

    Google Scholar 

  21. R. J. Brook:J. Amer. Ceram. Soc, 1969, vol. 52, pp. 56–57.

    Article  Google Scholar 

  22. F.M.A. Carpay:J. Amer. Ceram. Soc, 1977, vol. 60, pp. 82–83.

    Article  Google Scholar 

  23. W. D. Kingery and B. Francois:J. Amer. Ceram. Soc, 1965, vol. 48, pp. 546–47.

    Article  Google Scholar 

  24. R. L. Coble:J. Appl. Phys., 1961, vol. 32, pp. 787–92.

    Article  Google Scholar 

  25. T. K. Gupta:Amer. Ceram. Soc, 1978, vol. 61, pp. 191–95.

    Article  Google Scholar 

  26. C.H. Hsueh, A.G. Evans, and R.L. Coble:Acta Metall., 1982, vol. 30, pp. 1269–79.

    Article  Google Scholar 

  27. R.M. German:Science Sintering, 1983, vol. 15, pp. 27–42.

    Google Scholar 

  28. R.M. German:Sintering — Theory and Practice, D. Kolar, S. Pejovnik, and M.M. Ristic, eds., Elsevier Scientific, Amsterdam, Netherlands, 1982, pp. 177–83.

    Google Scholar 

  29. P.E. Zovas, R. M. German, K.W. Hwang, and J. Li:J. Metals, 1983, vol. 35, no. 1, pp. 28–33.

    Google Scholar 

  30. R. M. German and A. Labombard:Inter. J. Powder Metal. Powder Tech., 1982, vol. 18, pp. 147–56.

    Google Scholar 

  31. W. A. Kaysser, M. Amtenbrink, and G. Petzow:Sintering — Theory and Practice, D. Kolar, S. Pejovnik, and M. M. Ristic, eds., Elsevier Scientific, Amsterdam, Netherlands, 1982, pp. 275–82.

    Google Scholar 

  32. M. F. Yan:Advances in Powder Technology, G. Y. Chin, ed., ASM, Metals Park, OH, 1982, pp. 99–133.

    Google Scholar 

  33. W. S. Young and I. B. Cutler:J. Amer. Ceram. Soc, 1970, vol. 53, pp. 659–63.

    Article  Google Scholar 

  34. R.M. German and V. Ham:Metall. Trans. A, 1979, vol. 10A, pp. 1593–96.

    Article  Google Scholar 

  35. Y. Masuda and R. Wantanbe:Sintering Processes, G. Kuczynski, ed., Plenum Press, New York, NY, 1980, pp. 3–21.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation delivered at the symposium “Activated and Liquid Phase Sintering of Refractory Metals and Their Compounds” held at the annual meeting of the AIME in Atlanta, Georgia on March 9, 1983, under the sponsorship of the TMS Refractory Metals Committee of AIME.

Formerly Research Assistant in the Rensselaer Polytechnic Institute, Materials Engineering Department

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zovas, P.E., German, R.M. Retarded grain boundary mobility in activated sintered molybdenum. Metall Trans A 15, 1103–1110 (1984). https://doi.org/10.1007/BF02644704

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644704

Keywords

Navigation