Skip to main content
Log in

Radiation-induced strengthening and embrittlement in aluminum

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Commercially pure aluminum (1100 grade) in the annealed condition was irradiated to fast fluences in the range 1 to 3 × 1026 neutron/m2 (E > 0.1 MeV) and to similar thermal fluences at temperatures of 318 to 328 K, and was then tensile tested at temperatures between 298 and 643 K. This irradiation doubled the ultimate tensile strength and more than tripled the flow stress at all test temperatures. The work hardening exponent was severely reduced and there was a large loss in ductility. Strengthening is shown to be due to a fine precipitate of transmutation-produced silicon and an associated dislocation structure. At test tempera-tures below about 423 K the fracture mode was transgranular. Above 473 K grain boundary cavities were observed, the fracture mode become predominantly intergranular, and ductil-ity was further reduced. Unirradiated specimens containing cyclotron-injected helium showed no change in strength but displayed a loss in ductility at elevated temperatures. Concurrently holes were formed on the grain boundaries. Embrittlement in the neutron-irradiated specimens arises from two sources. One is through the defect structure which reduces the work-hardening exponent. The other is an additional effect at elevated temper-atures involving grain boundary failure by cavity growth and coalescence. Helium encour-ages cavity nucleation, the degree of cavitatlon increasing with increasing tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Bierlein and B. Mastel:J. Appl. Phys., 1962, vol. 33, p. 2873.

    Article  CAS  Google Scholar 

  2. J. O. Stiegler, K. Farrell, C. K. H. DuBose, and R. T. King: inRadiation Damage in Reactor Materials, vol. II, p. 215, IAEA, Vienna, 1969.

    Google Scholar 

  3. R. T. King, E. L. Long, Jr., J. O. Stiegler, and K. Farrell:J. Nucl. Mater., 1970, vol. 35, p. 231.

    Article  CAS  Google Scholar 

  4. N. H. Packan:J. Nucl. Mater., 1971, vol. 40, p. 1.

    Article  CAS  Google Scholar 

  5. K. Farrell, J. T. Houston, A. Wolfenden, R. T. King, and A. Jostsons: inRadia-tion-Induced Voids in Metals, Proceedings of Intern. Conf., Albany, New York, June 9-11,1971, AEC Symposium Series 26, p. 376,1972;also ORNL-TM-3493, September 1971.

  6. K. Farrell, J. O. Stiegler, and R. E. Gehlbach:Metallogr., 1970, vol. 3, p. 275.

    Article  CAS  Google Scholar 

  7. A. Jostsons, E. L. Long, Jr., J. O. Stiegler, K. Farrell, and D. N. Braski|: inRadiation-Induced Voids in Metals, Proceedings of Intern. Conf., Albany, New York, June 9-11,1971, AEC Symposium Series 26, p. 363,1972; also ORNL-TM-3494, October 1971.

  8. I. O. Smith and B. Russell:J. Nucl. Mater., 1971, vol. 38, p. 1.

    Article  CAS  Google Scholar 

  9. M. Kangilaski: Radiation Effects Information Center Report No. 45, Battelle Memorial Institute, Columbus, Ohio, 1967. A Review.

  10. K. Farrell, E. L. Long, Jr., R. T. King, and A. Jostsons:Postirradiation Exami-nation and Testing of the ORR NFTray, ORNL-TM-4183, Oak Ridge Na-tional Laboratory, in press.

  11. G. W. Cunningham and J. D. Jenkins:CASDAR, A Cross-Section and Neutron Spectrum Direct Access Retrieval System, Oak Ridge National Laboratory, unpublished research, 1972.

  12. Handbook of Chemistry and Physics, 52nd ed., R. C. Weast, ed., Chemical Rubber Pub. Co., Cleveland, Ohio, 1971.

  13. A. Jostsons and E. L. Long, Jr.:Radiation Effects, 1972, vol. 16, p. 83.

    Article  CAS  Google Scholar 

  14. E. D. Hyam and G. Summer: inRadiation Damage in Solids, I., p. 323, IAEA, Vienna, 1962.

    Google Scholar 

  15. W. H. Chatwin and E. D. Hyam:Grain Boundary Holes in Irradiated Uranium, UKAEA TRG Report 325(w), 1962.

  16. R. S. Barnes:Nature, 1965, vol. 206, p. 1307.

    Article  CAS  Google Scholar 

  17. D. R. Harries:J. Brit. Nucl. Energy Soc, January 1966, p. 74.

  18. A. F. Rowcliffe, G. J. C. Carpenter, H. F. Merrick, and R. B. Nicholson:Amer. Soc. Test. Mater., Spec. Tech. Publ. 426, p. 161.

  19. J. O. Stiegler and J. R. Weir, Jr.: inDuctility, Proceedings of ASM Seminar, p. 311, October 1967.

  20. D. Kramer, H. R. Brager, C. G. Rhodes, and A. G. Pard:J. Nucl. Mater., 1968, vol. 25, p. 121.

    Article  CAS  Google Scholar 

  21. R. T. King: in Intern. Conf. onThe Use of Cyclotrons in Chemistry, Metallurgy and Biology, Oxford, England, September 1969, C. B. Amphlett, ed., Butter-worths, London.

    Google Scholar 

  22. M. F. Ashby: inPhysics of Strength and Plasticity, A. S. Argon, ed., p. 113, MIT Press, Massachusetts, 1960.

    Google Scholar 

  23. J. E. Bailey and P. B. Hirsch:Phil. Mag., 1960, vol. 5, p.4855.

    Article  CAS  Google Scholar 

  24. D. Kuhlmann-Wilsdorf:Trans. TMS-AIME, 1962, vol. 224, p. 1047.

    CAS  Google Scholar 

  25. P. Coulomb:Acta Met., 1959, vol. 7, p. 556.

    Article  CAS  Google Scholar 

  26. U. F. Kocks: inPhysics of Strength and Plasticity, A. S. Argon, ed., p. 143, MIT Press, Massachusetts, 1969.

    Google Scholar 

  27. F. Kroupa and P. B. Hirsch:Discuss. Faraday Soc, 1964, vol. 38, p. 49.

    Article  Google Scholar 

  28. F. N. Rhines and P. J. Wray:ASM Trans. Quart., 1961, vol. 54, p. 117.

    Google Scholar 

  29. J. O. Stiegler, K. Farrell, B. T. M. Loh, and H. E. McCoy:ASM Trans. Quart., 1967, vol. 60, p. 494.

    CAS  Google Scholar 

  30. C. E. Ransley and D. E. J. Talbot:Z. Metallic., 1955, vol. 46, p. 328.

    CAS  Google Scholar 

  31. W. Eicheinauer and A. Pebler:Z. Metallic., 1957, vol. 48, p. 373.

    Google Scholar 

  32. Y. Ishida and M. Henderson Brown:Acta Met., 1967, vol. 15, p. 857.

    Article  CAS  Google Scholar 

  33. H. Gleiter:Phys. Status Solidi, 1971, vol. 45, p. 9.

    Article  CAS  Google Scholar 

  34. Y. Ishida and D. McLean:Metal Sci. J., 1967, vol. l,p. 171.

    Google Scholar 

  35. D. Hull and D. Rimmer:Phil. Mag., 1959, vol. 4, p. 673.

    Article  CAS  Google Scholar 

  36. M. V. Speight and J. E. Harris:Metal Sci. J., 1967, vol. 1, p. 83.

    Article  CAS  Google Scholar 

  37. K. H. Westmacott, R. E. Smallman, and P. S. Dobson:Metal Sci. J., 1968, vol. 2, p. 177.

    Article  CAS  Google Scholar 

  38. D. A. Woodford:Metal Sci. J., 1969, vol. 3, p. 50.

    Google Scholar 

  39. G. W. Greenwood:Phil. Mag., 1969, vol. 19, p. 423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrell, K., King, R.T. Radiation-induced strengthening and embrittlement in aluminum. Metall Trans 4, 1223–1231 (1973). https://doi.org/10.1007/BF02644515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644515

Keywords

Navigation