Skip to main content
Log in

Hydrogen attack of carbon steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A model is developed for the kinetics of nucleation and growth of methane bubbles in the hydrogen attack of carbon steel. It is concluded that at high temperatures the time to incubate fissuring along grain boundaries is determined by the rate of iron diffusion away from microscopic growing bubbles. At lower temperatures and/or higher hydrogen pressures carbon supply is limiting. The equations fit the observed incubation times if the bubble density is high (~107/cm2) and essentially independent of temperature (T) and hydrogen pressure (P) over a wide range. It is postulated that the number of growing bubbles is limited at high nucleation rates (lowT and highP) by carbon starvation. At hiT and lowP chemisorption to lower the solid-vapor surface energy or fine inclusions are required to aid nucleation. A quantitative analysis of these processes leads to several predictions which can be checked experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steel for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants, API Publ. 941, July 1970.

  2. Numerous papers resulted from this long term project. Essentially all were published in Proc. API. The principal investigators on the project have been F. H. Vitovec 1960-66, G. Geiger 1966-70, and F. J. Worzala 1970-73.

  3. L. C. Wiener:Corrosion, 1961, vol. 17, pp. 137–43.

    Google Scholar 

  4. R. E. Allen, R. J. Jansen, P. C. Rosenthal, and F. H. Vitovec: Proc. API 1962, vol. 42, pp. 452–62.

    Google Scholar 

  5. H. J. Grabke and E. Martin:Arch Eisenhuettenw., 1972, vol. 44, pp. 837–42.

    Google Scholar 

  6. D. A. Westphal and F. J. Worzala:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., pp. 78-89, ASM, 1974.

  7. J. C. Swartz:Trans. TMS-AIME 1969, vol. 245, pp. 1083–92.

    CAS  Google Scholar 

  8. D. Keefer and C. A. Wert:Trans. TMS-AIME 1959, vol. 215, p. 114.

    CAS  Google Scholar 

  9. Methane data-X4A04FThermochemieal Data, 2nd ed., June 1971, NSRDS- NBS-37. Fe3C data—L. Darken and R. Gurry,Physical Chemistry of Metals, p. 401, McGraw Hill, N.Y., 1953.

  10. H. H. Podgurski:Trans. TMS-AIME, 1961, vol. 221, pp. 389–94.

    CAS  Google Scholar 

  11. M. L. Hill and E.W. Johnson:Trans. TMS-AIME, 1959, vol. 215, pp. 717–25.

    CAS  Google Scholar 

  12. H. S. Carslaw and J. C. Jaeger:Conduction of Heat in Solids, Clarendon Press, 2nded., p. 191, 1959.

  13. M.V. Speight and J. E. Harris:Metal Sci. J., 1967, vol. l,pp. 83–85.

    Google Scholar 

  14. R. Raj and M. Ashby:Acta Met., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  15. Sten Bergh:Jarnkont. Ann., 1962, vol. 146, pp. 748–62. For an extended summary in English see Roland Kiessling:Non-Metallic Inclusions in Steel Part III, ISI Special Report 115. 1958, pp. 1-7.

    CAS  Google Scholar 

  16. M. Ashby and R. M. A. Centamore:Acta Met., 1968, vol. 16, p. 1081.

    Article  CAS  Google Scholar 

  17. R. E. Miller, J. B. Hudson, G.S. Ansell:Met. Trans. A, 1975, vol. 6A, pp. 117–21.

    Article  Google Scholar 

  18. L. Deffet and F. Ficks:Adv. in Thermophys., Prop at Extreme Tand P, Proc. of 3rd Symp., Serge Gratch, ed., ASME, 1965, pp. 107-13.

  19. C.A. Wert:Phys. Rev., 1950, vol. 79, p. 601. (D = 0.02 exp (-20, 100/RT)cm2/s.)

    Article  CAS  ADS  Google Scholar 

  20. F. S. Buffington, K. Hirano, and M. Cohen:Acta Met., 1961, vol. 9, p. 434. (D = 2.0 exp (-57,300/RT)cm2/s.)

    Article  CAS  Google Scholar 

  21. D. W. James and G. M. Leak:Phil. Mag., 1965, vol. 12, p. 491. (D° = 1.1 × 10-6 exp (-41,500/RT)cm3/s.)

    Article  CAS  ADS  Google Scholar 

  22. R. H. Harrison, R. T. Moore, and D. R. Douslin:J. Chem. Eng. Data, 1973, vol. 18, p. 131, report measurements on methane up to 350°C and 370 atm where the activity coefficient is 1.11, and 1.097 at 300°C and 371 atm. No equation exists for extrapolation to the significantly higher pressures of interest here.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Director, Division Material Research, National Science Foundation, Washington, DC

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shewmon, P.G. Hydrogen attack of carbon steel. Metall Trans A 7, 279–286 (1976). https://doi.org/10.1007/BF02644468

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644468

Keywords

Navigation