Skip to main content
Log in

Behavior of a nickel-base high-temperature alloy under hot-working conditions

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The behavior of a Ni-Cr-Co base alloy with significant additions of Mo, Ti and Al (Nimonic 105) under hot working conditions was studied using hot compression tests in the temperature range of 1223 to 1523 K and strain rates between 0.38 and 64.3 s-1.

The microstructure of the Nimonic 105 is complex and the matrix contains second phases in the form of Ni3 (Ti, Al) dispersion (γ′), various Cr and Ti carbides and titanium cyanonitrides inclusions.

However, the results show that above the dissolution temperature of the γ′ phase, the alloy behaves like a single phase nickel-base solid solution from the point view of steady state flow stress-temperature-strain rate relationships, and the activation energies for hot working and static recrystallization.

Under deformation conditions where the γ′ phase is present, as in the case of creep, the activation energy is almost doubled. The hot working temperature range giving sound product is 1280 to 1450 K (170 K) at a strain rate of 0.4 s-1 and decreases to 1400 to 1480 K (80 K) at a strain rate of 65 s-1. At temperatures above the higher limit the alloy suffers intercrystalline cracks due to hot shortness and at temperatures below the lower limit the alloy suffers transcrystalline cracks due to excessive strain hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Taylor and E. A. Floyd:J. Inst. Metals, 1952-53, vol. 81, p. 451.

    Google Scholar 

  2. W. Betteridge:The Nimonic Alloys, Edward Arnold Ltd., London, 1959.

    Google Scholar 

  3. W. Betteridge and A. W. Franklin:J. Inst. Metals, 1950-57, vol. 85, p. 473.

    Google Scholar 

  4. A. W. Franklin, J. Thexton, and D. R. Wood:Joint Int. Conf. Creep, Inst. of Mech. Eng., 1962, vol. 1, pp. 7–21.

    Google Scholar 

  5. A. Chaudhuri:J. Inst. Metals, 1970, vol. 98, p. 114.

    Google Scholar 

  6. C. H. White:J. Inst. Metals, 1969, vol. 97, p. 215.

    Google Scholar 

  7. S. T. Quaass:J. Inst. Metals, 1968, vol. 96, p. 129.

    CAS  Google Scholar 

  8. C. W. Weaver:J. Inst. Metals, 1959-60, vol. 88, p. 462.

    Google Scholar 

  9. J. Heslop:J. Inst. Metals, 1962-63, vol. 91, p. 28.

    CAS  Google Scholar 

  10. J. L. Uvira and J. J. Jonas:Trans. TMS-AIME, 1968, vol. 242, p. 1619.

    CAS  Google Scholar 

  11. S. K. Samanta:J. Iron Steel Inst., 1968, vol. 122, p. 130.

    Google Scholar 

  12. O. Pawelski, G. Grave, and D. Lohr:J Iron Steel Inst., 1970, vol. 147, p. 155.

    Google Scholar 

  13. C. M. Sellars and W. J. McG. Tegart:Rev. Met., 1966, vol. 63, p. 731.

    CAS  Google Scholar 

  14. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, Macmillan, New York, 1965.

    Google Scholar 

  15. J. P. Dennison, R. J. Llewellyn, and B. Wilshire:J. Inst. Metals, 1967, vol. 95, p. 115.

    CAS  Google Scholar 

  16. K. Monma, H. Suto, and H. Oikawa:J. Japan Inst. Metals, 1964, vol. 24, p. 253.

    Google Scholar 

  17. M. R. Achter and P. Shahinian:Trans. ASM, 1959, vol. 51, p. 244.

    Google Scholar 

  18. G. A. Webster and B. J. Piearcy:Metal Sci. J., 1967, vol. l, p.97.

    Google Scholar 

  19. A. J. Ardell and R. B. Nicholson:Acta Met., 1966, vol. 14, p. 1295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farag, M.M., Hamdy, M.M. Behavior of a nickel-base high-temperature alloy under hot-working conditions. Metall Trans A 7, 221–228 (1976). https://doi.org/10.1007/BF02644460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644460

Keywords

Navigation