Skip to main content
Log in

Solute segregation and hydrogen-induced intergranular fracture in an alloy steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen-induced intergranular fracture of laboratory heats of a 3.5 Ni-1.7 Cr steel doped with P, Sn, or Sb and having a yield strength of 840 MPa and a prior austenite grain size of 120 μm has been compared with that of an undoped steel at a hydrogen pressure of 0.17 MPa (1.68 atm). The intergranular concentrations of the impurities were controlled by varying the time of aging at 480 °C. Cracking of the undoped steel tested in hydrogen occurred along martensitic lath boundaries at high stresses. However, the susceptibility of the doped steels to hydrogen-induced intergranular cracking increased precipitously with impurity concentration. The susceptibility was measured in terms of the threshold stress intensity Kthfor the first detectable crack extension in precracked specimens and in terms of the threshold stress σth for microcrack formation in notched specimens. A comparison between the intergranular strength in hydrogen and in air revealed that absorption of hydrogen produced a profound intergranular weakening when the grain boundaries contained even a small amount of a segregated embrittling element. The relative embrittling potencies of P, Sn, and Sb in hydrogen gas were the same as in air. The combined effects of hydrogen and the impurities in reducing intergranular cohesion are discussed in terms of a newly proposed dynamic model which takes into account the accumulation of hydrogen ahead of a moving microcrack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Williams and H. G. Nelson:Metall. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  2. I. M. Bernstein:Mater. Sci. Eng., 1970, vol. 6, p. 1.

    Article  CAS  Google Scholar 

  3. R. A. Oriani and R.H. Josephc:Acta Metall., 1974, vol. 22,p. 1065.

    Article  CAS  Google Scholar 

  4. K. Yoshino and C. J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 363.

    CAS  Google Scholar 

  5. W.W. Gerberich, Y.T. Chen, and C. St. John:Metall. Trans. A, 1975, vol. 6A, p. 1485.

    CAS  Google Scholar 

  6. G.W. Simmon, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1978, vol. 9A, p. 1147.

    Google Scholar 

  7. S. K. Banerji, C. J. McMahon, Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 9A, p. 233.

    Google Scholar 

  8. T. D. Lee, T. Goldenberg, and J. P. Hirth:Metall. Trans. A, 1979, vol. 10A, p. 439.

    CAS  Google Scholar 

  9. N. Bandyopadhyay, J. Kameda, and C. J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, p. 881.

    Google Scholar 

  10. C. L. Briant, H. C. Feng, and C. J. McMahon, Jr.:Metall. Trans. A, 1978, vol. 9A, p. 625.

    CAS  Google Scholar 

  11. J. Kameda, N. Bandyopadhyay, and C.J. McMahon, Jr.: Proc. of Second JIM Int. Symp., “Hydrogen in Metals”, suppl. toTrans. Japan Inst. Metals, Minakami, Japan, 1980, vol. 21, p. 437.

    Google Scholar 

  12. Y. Takeda and C. J. McMahon, jr.:Metall. Trans. A, 1981, vol. 12A, p. 1255.

    Google Scholar 

  13. J. Kameda and C. J. McMahon, Jr.:Metall. Trans. A, 1980, vol. 11A, p. 91.

    CAS  Google Scholar 

  14. J. Kameda and C. J. McMahon, Jr.:Metall. Trans. A, 1981, vol. 12A, p. 31.

    Google Scholar 

  15. Specification E-399-76, ASTM, Philadelphia, PA, 1976.

  16. J.R. Griffiths and D.R.J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, p. 419.

    Article  Google Scholar 

  17. J. Kameda:Metall. Trans. A, 1981, vol. 12A, p. 2039.

    Google Scholar 

  18. C. J. McMahon, Jr. and V. Vitek:Acta Metall., 1979, vol. 27, p. 507.

    Article  CAS  Google Scholar 

  19. M.L. Jokl, V. Vitek, and C.J. McMahon, Jr.:Acta Metall., 1980, vol. 28, p. 1479.

    Article  Google Scholar 

  20. H.H. Johnson, J.F. Morlet, and A.R. Troiano:Trans. TMS-AIME, 1958, vol. 212, p. 528.

    CAS  Google Scholar 

  21. A.R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  22. R. A. Oriani:Ber. Bunsen Besellsch. Phys. Chem., 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  23. CM. Li, R.A. Oriani, and L.W. Darken:Z. Phys. Chem., 1966, vol. 49, p. 271.

    CAS  Google Scholar 

  24. J. Kameda and M.L. Jokl:Scripta Metall., 1982, vol. 16, p. 325.

    Article  CAS  Google Scholar 

  25. C.J. McMahon, Jr., inHydrogen Effects in Metals, I.M. Bernstein and A. W. Thompson, eds., TMS-AIME, 1980, p. 219.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, University of Pennsylvania

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameda, J., Mcmahon, C.J. Solute segregation and hydrogen-induced intergranular fracture in an alloy steel. Metall Trans A 14, 903–911 (1983). https://doi.org/10.1007/BF02644295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644295

Keywords

Navigation