Skip to main content

Zero-flux planes and flux reversals in the Cu- Ni- Zn System at 775 °C

Abstract

Ternary diffusion in the Cu-Ni-Zn system was investigated at 775 °C for the development of zero-flux planes (ZFP) and flux reversals of the individual components. ZFP’s, where the interdiffusion flux of either Cu, Ni, or Zn goes to zero, were identified in several series of single phase and multiphase solid-solid diffusion couples assembled with a (fcc),β (bcc), or γ (cubic) Cu-Ni-Zn alloys and characterized by terminal alloys of similar thermodynamic activity for one of the components. Profiles of interdiffusion fluxes were directly determined from concentration profiles. The diffusion path for a single phase couple with a ZFP was experimentally found to be invariant with diffusion time. The locations of ZFP’s within the diffusion zone of a couple corresponded to sections where the activity of a component was the same as its activity in either of the terminal alloys of the couple. Couples developing ZFP’s showed regions where a component diffused up its own activity gradient. The diffusional interactions among the components described by the ratios of cross to main ternary interdiffusion coefficients were determined directly from the slopes of the diffusion paths at various ZFP compositions. In several multiphase couples, discontinuous flux reversals for the components were also identified at theβ/a and γ/β interfaces. A discontinuous flux reversal for a component was observed at a planar interface, when the activity of the component at the interface corresponded to its activity in one of the terminal alloys of the couple.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. A. Dayananda and C. W. Kim:Metall. Trans. A, 1979, vol. 10A, p. 1333.

    CAS  Google Scholar 

  2. 2.

    C. W. Kim and M. A. Dayananda:Metall. Trans. A, 1983, vol. 14A, p. 857.

    Google Scholar 

  3. 3.

    M. A. Dayananda:Metall. Trans. A, 1983, vol. 14A, p. 1851.

    CAS  Google Scholar 

  4. 4.

    M. A. Dayananda and C. W. Kim:ScriptaMet., 1982, vol. 16, p. 815.

    Article  CAS  Google Scholar 

  5. 5.

    K.J. Anusavice and R.T. DeHoff:Metall. Trans., 1972, vol. 3, p. 1279.

    Article  Google Scholar 

  6. 6.

    R.D. Sasson, Jr. and M. A. Dayananda:Metall. Trans. A, 1977, vol. 8A, p. 1849.

    Google Scholar 

  7. 7.

    C.C. Wan: Ph.D. Thesis, University of Florida, Gainesville, FL, 1973.

    Google Scholar 

  8. 8.

    A.G. Guy, H. Fuchtig, and R.H. Buck:Trans. TMS-AIME, 1965, vol. 233, p. 1178.

    CAS  Google Scholar 

  9. 9.

    C. W. Tylor, Jr., M. A. Dayananda, and R. E. Grace:Metall. Trans., 1970, vol. 1, p. 127.

    Google Scholar 

  10. 10.

    D. E. Coates and J. S. Kirdaldy:Metall. Trans., 1971, vol. 2, p. 3467.

    CAS  Google Scholar 

  11. 11.

    R. D. Ssson, Jr. and M. A. Dayananda:Metall. Trans., 1972, vol. 3, p. 647.

    Google Scholar 

  12. 12.

    R.D. Sisson, Jr.: Ph.D. Thesis, 1975, Purdue University, West Lafayette, IN.

    Google Scholar 

  13. 13.

    L. E. Wirtz and M. A. Dayananda:Metall. Trans. A, 1977, vol. 8A, p. 567.

    CAS  Google Scholar 

  14. 14.

    ASM Metals Handbook, ASM Publication, Metals Park, OH, 1970, vol. 8, p. 427.

  15. 15.

    M. Hansen and K. Anderko:Constitution of Binary Alloys, McGraw-Hill Publishing Co., New York, NY, 1958, p. 1059.

    Google Scholar 

  16. 16.

    W. W. Liang, Y. A. Chang, and S. Lau:Acta Metall., 1973, vol. 21, p. 629.

    Article  CAS  Google Scholar 

  17. 17.

    R. F. Mehl and C. F. Lutz:Trans. TMS-AIME, 1961, vol. 221, p. 561.

    CAS  Google Scholar 

  18. 18.

    J. O. Betterton and W. Hume-Rothery:J. Inst. Metals, 1951, vol. 80, p. 459.

    Google Scholar 

  19. 19.

    L. Elford, F. Müller, and O. Kubaschewski:Ber. Bunsengesellschaft, 1969, vol. 73, p. 601.

    CAS  Google Scholar 

  20. 20.

    R. A. Rapp and F. Maak:Acta Metall., 1962, vol. 10, p. 63.

    Article  CAS  Google Scholar 

  21. 21.

    B. A. Hargreaves:J. Inst. Metals, 1939, vol. 64, p. 115.

    Google Scholar 

  22. 22.

    V. A. Schneider and H. Schmid:Z. Electrochem., 1942, vol. 48, p. 627.

    CAS  Google Scholar 

  23. 23.

    B.B. Argent and D.W. Wakeman:Trans. Faraday Soc, 1958, vol. 59, p. 799.

    Article  Google Scholar 

  24. 24.

    V. Campos and T. R. A. Davies: Colorado School of Mines, Golden, CO, unpublished research, 1974.

  25. 25.

    E.V. Clougherty and L. Kaufman:Acta Metall., 1963, vol. 11, p. 1043.

    Article  CAS  Google Scholar 

  26. 26.

    T. G. Chart, T. K. Critchley, and R. Williams:J. Inst. Metals, 1968, vol. 96, p. 224.

    CAS  Google Scholar 

  27. 27.

    W.W. Liang, J.W. Frank, and Y.A. Chang:Metall. Trans., 1972, vol. 3, p. 2555.

    Article  CAS  Google Scholar 

  28. 28.

    G.A. Chadwick and B.B. Argent:Trans. Faraday Soc, 1961, vol. 57, p. 2138.

    Article  CAS  Google Scholar 

  29. 29.

    L. S. Darken:J. Am. Chem. Soc, 1950, vol. 72, p. 2909.

    Article  CAS  Google Scholar 

  30. 30.

    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley:Selected Values of Thermodynamic Properties of Binary Alloys, ASM, 1973, p. 1249.

  31. 31.

    G.A. Chadwick and B.B. Argent:J. Inst. Metals, 1959, vol. 88, p. 318.

    Google Scholar 

  32. 32.

    E. A. Owens and L. Pickup:Proc. Royal Soc. A, 1934, vol. 145, p. 358.

    Google Scholar 

  33. 33.

    K. W. Andrews and W. Hume-Rothery:Proc. Royal Soc. A, 1941, vol. 178, p. 464.

    Google Scholar 

  34. 34.

    W. B. Pearson:A Handbook of Lattice Spacings and Structures of Metals and Alloys, Met. Phys. and Phys. Met., 1958, vol. 4, p. 620.

    Google Scholar 

  35. 35.

    F. A. Shunk:Constitution of Binary Alloys, Second Supplement, McGraw-Hill Publishing Co., New York, NY, 1969.

    Google Scholar 

  36. 36.

    G. L. Kehl:Principles of Métallo graphic Laboratory Practice, McGraw-Hill Publishing Co., New York, NY, 1949, p. 420.

    Google Scholar 

  37. 37.

    L. E. Wirtz: M.S. Dissertation, School of Materials Engineering, Purdue University, W. Lafayette, IN, 1975.

    Google Scholar 

  38. 38.

    M.A. Dayananda and R.E. Grace:Trans. TMS-AIME, 1965, vol. 233, p. 1287.

    CAS  Google Scholar 

  39. 39.

    P.T. Carlson, M.A. Dayananda, and R.E. Grace:Metall. Trans., 1972, vol. 3, p. 819.

    CAS  Google Scholar 

  40. 40.

    L. Onsager:Ann. N.Y. Acad. Sci., 1945, vol. 46, p. 241.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, C.W., Dayananda, M.A. Zero-flux planes and flux reversals in the Cu- Ni- Zn System at 775 °C. Metall Mater Trans A 15, 649–659 (1984). https://doi.org/10.1007/BF02644196

Download citation

Keywords

  • Metallurgical Transaction
  • Diffusion Couple
  • Diffusion Path
  • Diffusion Zone
  • Interdiffusion Coefficient