Skip to main content
Log in

Forging of metal-matrix composites-forming limit criteria

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The large-scale plastic deformation behavior of aluminum-stainless steel fiber composites has been examined under conditions of simulated forging. With the load applied perpendicular to the direction of reinforcement, deformation normally occurs in a plane strain mode with no metal flow in the direction of fiber alignment. Two possible types of material damage are identified: (i) void formation in the matrix adjacent to the fibers; (ii) breaking of the fibers, leading to deviations from plane strain. Forming limit criteria for both types of damage are established, which are related to the workpiece geometry and friction parameters of the system through plasticity theory. These criteria form the basis of a rational approach to design of processes for forging complex shapes from fiber-reinforced composite materials having a ductile matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. J. Toth, W. D. Brentnall, and D. G. Menke:J. Metals, Oct. 1972, vol 24 p. 37.

    Google Scholar 

  2. M. Salkind, F. George, and W. Tice:Trans. TMS-AIME, 1969, vol. 245, p. 2339.

    CAS  Google Scholar 

  3. B. Avitzur: “Deformability of Fiber-Reinforced Material and the Effect of Plastic Deformation on its Mechanical Properties”, Ph. D. Thesis, Lehigh University, Bethlehem, Pa., 1969.

    Google Scholar 

  4. S. Kobayashi:Trans. ASME, 1970, vol. 92, Series B, p. 391.

    Google Scholar 

  5. P. W. Lee and H. A. Kuhn:Met. Trans., 1973, vol. 4, p. 969.

    Article  CAS  Google Scholar 

  6. W. A. Backofen:Deformation Processing, p. 163, Addison-Wesley, Reading, Mass., 1972.

    Google Scholar 

  7. G. W. Rowe:An Introduction to the Principles of Metalworking, p. 240, Arnold, London, 1965.

    Google Scholar 

  8. S. Kalpakjian:Mechanical Processing of Materials, p. 131, Van Nostrand, Princeton, N. J., 1967.

    Google Scholar 

  9. A. T. Male and M. G. Cockcroft:J. Inst. Metals, 1964-65, vol. 93, p. 39.

    Google Scholar 

  10. W. A. Backofen: see Ref. 6, p. 40.

  11. J. N. Goodier:Trans. ASME, 1933, vol. 55, p. 39.

    Article  Google Scholar 

  12. M. F. Ashby:Phil. Mag, 1966, vol. 14, p. 1157.

    Article  CAS  Google Scholar 

  13. H. R. Vorhees and J. W. Freeman:Report on the Elevated Temperature Properties of Aluminum and Magnesium Alloys, ASTM Publication 291, philadelphia, pa., October. 1961.

  14. M. R. Pinnel and A. Lawley:Met. Trans., 1970, vol. 1, p. 1337.

    Article  CAS  Google Scholar 

  15. A. Pattnaik and A. Lawley:Met. Trans., 1974, vol. 5, p. 111.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

T. ERTÜRK, formerly Research Assistant (Academic Program of the Agency for International Development, Department of State), Department of Metallurgical Engineering, Drexel University, Philadelphia, Pa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertürk, T., Kuhn, H.A. & Lawley, A. Forging of metal-matrix composites-forming limit criteria. Metall Trans 5, 2295–2303 (1974). https://doi.org/10.1007/BF02644009

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644009

Keywords

Navigation